
www.manaraa.com

www.manaraa.com

Springer Books on Professional Computing

www.manaraa.com

Springer Books on Professional Computing

Computer Confidence: A Human Approach to Computers
Bruce D. Sanders. viii, 90 pages. 23 figures. 1984. ISBN 0-387-90917-6

The American Pascal Standard: With Annotations
Henry Ledgard. vii, 97 pages. 1984. ISBN 0-387-91248-7

Modula-2 for Pascal Programmers
Richard Gleaves. X, 145 pages. 18 figures. 1984 ISBN 0-387-96051-1

Ada in Practice
Christine N. Ausnit, Norman H. Cohen, John B. Goodenough,
R. Sterling Eanes.

The World of Programming Languages
Michael Marcotty, Henry Ledgard. xvi, 360 pages. 30 figures. 1986.
ISBN 0-387-96440-1

Taming the Tiger: Software Engineering and Software Economics
Leon S. Levy. viii, 248 pages. 9 figures. 1987. ISBN 0-387-96468-1

The Unix Sys~m Guidebook, Second Edition
Peter P. Silvester. xiv, 334 pages. 16 figures. 1988. ISBN 0-387-96489-4

C: A Software Engineering Approach
Peter A. Darnell, Philip E. Margolis. xx, 624 pages. 62 figures. 1991.
ISBN 0-387-97389-3

www.manaraa.com

Peter A. Darnell Philip E. Margolis

c: A Software
Engineering Approach

With 62 Illustrations

Springer-Verlag
New York Berlin Heidelberg London
Paris Tokyo Hong Kong Barcelona

www.manaraa.com

Peter A. Darnell
Visual Solutions
Westford, MA 01886
USA

Original cover art by Bernard Bonhomme, Incandescent Ink, Inc.

Philip E. Margolis
New York, NY 10023
USA

Material in this revised edition was previously published under the title Software Engineering in C,
© 1988 Springer-Verlag New York, Inc.

Darnell, Peter A.
C, a software engineering approach / by Peter A. Darnell, Philip E. Margolis.

- 2nded.
p. cm. - (Springer books on professional computing)

Rev. ed. of: Software engineering in C. c 1988.
Includes index.
I. Software engineering. 2. C (Computer program language)

I. Margolis, Philip E. II. Darnell, Peter A. Software Engineering
in C. III. Title. IV. Series.
QA 76.758.D37 1990
005.26'2-dc20 90-31417

Printed on acid-free paper.

© 1991 Springer-Verlag New York, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 100 10,
USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by the
Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Photocomposed copy prepared from the authors' Interleaf file.

987654321

ISBN-13:978-0-387-97389-0
001:10.1007/978-1-4684-0383-1

e-ISBN-13:978-1-4684-0383-1

www.manaraa.com

In memory of Roo Darnell, friend and brother,
and one of the most promising young software
engineers we have ever known.

www.manaraa.com

Preface

This book describes the C programming language and software engineering prin
ciples of program construction. The book is intended primarily as a textbook for
beginning and intermediate C programmers. It does not assume previous knowl
edge of C, nor of any high-level language, though it does assume that the reader
has some familiarity with computers. While not essential, knowledge of another
programming language will certainly help in mastering C.

Although the subject matter of this book is the C language, the emphasis is on
software engineering-making programs readable, maintainable, portable, and
efficient. One of our main goals is to impress upon readers that there is a huge
difference between programs that merely work, and programs that are well engi
neered, just as there is a huge difference between a log thrown over a river and a
well-engineered bridge.

The book is organized linearly so that each chapter builds on information provided
in the previous chapters. Consequently, the book will be most effective if chapters
are read sequentially. Readers with some experience in C, however, may find it
more useful to consult the table of contents and index to find sections of particular
interest.

Each chapter is autonomous inasmuch as it covers a single, well-defined area of
the C language, such as scalar data types or control flow. Moreover, the chapters
themselves are organized linearly, so that each section uses information provided
in earlier sections. Again, experienced C programmers may want to skim intro
ductory sections.

www.manaraa.com

viii Preface

Although this book covers all C features, it makes no claim to being a reference
manual. The organization and pace are designed for those learning the language
rather than those who already know the langu~e. If you plan to do extensive
programming in C, we recommend that you supplement our book with C: A
Reference Manual, by Harbison and Steele.

This book describes all features of the C language defined by Kernighan and
Ritchie (known as the K&R standard), as well as all features defmed in the C
Standard proposed by the American National Standards Institute (ANSI). Where
the two versions differ, we highlight the difference either by explicitly describing
each version in the text or by describing the ANSI feature in a shaded box. A list
of differences between the two standards appears in Appendix E. For more
information about the ANSI Standard, you should read the official specification,
which you can obtain by writing to:

American National Standards Institute
1430 Broadway
New York, NY 10018

In addition to using shaded boxes to describe ANSI extensions, we also use boxes
to highlight common errors made by C programmers. These "Bug Alerts" are
intended as buoys to mark places where we and others have run aground.

The examples in this book have all been tested on three machines: A PC-compat
ible Zenith Z-151 running the Microsoft Version 3.0 C compiler, an Apollo
DN3000 running the DOMAIN C compiler (Version 4.78), and a Sun Microsys
terns 3/50 computer running Version 3.1 of the Sun compiler. Whenever possible,
we have tried to use realistic examples gleaned from our own experiences. Occa
sionally we refer to "our machine," which means any of these three computers.
The most significant aspect of "our machine" is that it allocates four bytes for iots.

Appendix A describes all of the runtime library functions defined in the ANSI
standard. Many of these functions are derived from UNIX functions and are
present in current C runtime libraries. Be careful, though, because some ANSI
functions behave differently from identically-named functions in older libraries.

Appendix B shows the syntax of the ANSI C language in the form of "railroad
diagrams." Each rectangular box in a diagram represents another diagram defined
elsewhere. Items that appear in ovals are C keywords and predefined names that
must appear exactly as they are written. Circles are used to represent punctuation
tokens. Unless stated otherwise, it is always legal to insert spaces and new lines
between one item and another.

www.manaraa.com

Preface ix

Appendix C lists all names reserved by the ANSI standard. This includes key
words, library function names, and type definitions used by the library. You
should avoid declaring variables that conflict with these names.

Appendix D lists certain ranges that an ANSI -conforming compiler must support.
This includes, for example, the range of values that must be representable in a
floating-point number.

Appendix E lists the major differences between the ANSI Standard and the K&R
standard. Each entry in this list contains a reference to the section in the book
where the difference is described. Note that this list is not exhaustive.

Appendix F contains the source listings for a C interpreter. In Chapter 12, we refer
to this program as an example of using good engineering techniques to produce a
large software product.

Acknowledgments
First and foremost, we wish to acknowledge our debt to the authors of the two
most influential books about C: Samuel Harbison, Brian Kernighan, Dennis Ritch
ie, and Guy Steele.

In addition to the books by these authors, we also leaned heavily on the Draft
Proposed ANSI Standard, and we thank all of the members of the ANSI X3Jll
Subcommittee for their efforts in creating this document.

Many people reviewed various parts of this book at various stages. We are
indebted to all of them, particularly David Boundy, David Boyce, Gary Bray,
Clem Cole, Karen Darnell, Norman Garfinkle, John Humphrys, Ben Kingsbury,
Diane Margolis, Doug McGlathery, Beth O'Connell, John Peyton, Bill Plauger,
Barry Rosenberg, Jim Van Sciver, Kincade Webb, Bob Weir, and John Weiss. We
are also indebted to the software development team at Dynatech Data Systems,
especially Elizabeth Stark and Jonathan Edney. Special thanks go to Chuck Con
nell, Sam Harbison, and Tom Pennello, who read the manuscript in its entirety and
offered numerous invaluable suggestions. We would also like to thank Kathy Ford
for her assistance in preparing the artwork, and Andrea Morris for her expert
editorial advice. Naturally, we accept responsibility for any flaws that remain.

Finally we would like to thank Apollo Computer Inc. and Stellar Computer Inc.
for providing the working environments in which to produce this book. The entire
book was formatted using the Interleaf Version 3.0 electronic publishing system
running on an Apollo DN3000 workstation.

www.manaraa.com

x Preface

Suggested Reading
We have found tpe following books extremely helpful in mastering C and in
absorbing general software engineering principles.

Aho, Alfred V., and Jeffrey P. Ullman. Principles of Compiler Design. Addi
son-Wesley, 1972.

Brooks, Frederick P., Jr. The Mythical Man Month: Essays on Software Engi
neering. Addison-Wesley, 1974.

Date, C. J. An Introduction to Database Systems. 4th ed. Addison-Wesley,
1986.

Foley, J. D., and A. Van Dam. Fundamentals of Computer Graphics. Addi
son-Wesley, 1980.

Harbison, Samuel P., and Guy L. Steele Jr. C: A Reference Manual. 2d ed.
Prentice Hall, 1984.

Kernighan, Brian W., and P. J. Plauger. Software Tools. Addison-Wesley,
1976.

Kernighan, Brian W., and P. 1. Plauger. Elements of Programming Style.
McGraw-Hill, 1978.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language.
Prentice-Hall, 1978.

Knuth, Donald E. The Art of Computer Programming. Addison-Wesley,
1973.

Shore, John. The Sacher Torte Algorithm. Penguin Books, 1986.

www.manaraa.com

Contents

Preface ... vii

Chapter 1

Introduction to Programming 1

1.1 High-Level Programming Languages 3
1.2 History of C . 5
1.3 ANSI Standard. 6
1.4 NatureofC 7

Chapter 2

Essentials 9

2.1 Program Development . 9
2.2 Functions. 14
2.3 Anatomy of a C Function 18
2.4 Formatting Source Files . 26
2.5 The main() Function 28
2.6 The prinif() Function . 31
2.7 The scanf() Function 33
2.8 The Preprocessor .. 34
Exercises .. 37

Chapter 3

Scalar Data Types 38

3.1 Declarations. 39
3.2 Different Types ofIntegers 41
3.3 Different Kinds ofInteger Constants. 47
3.4 Floating-Point Types 52
3.5 Initialization. 54
3.6 Mixing Types . 55
3.7 Explicit Conversions - Casts. 65
3.8 Enumeration Types 66
3.9 The void Data Type . 67
3.10 Typedefs.. 68

www.manaraa.com

xii Contents

3.11 Finding the Address of an Object 70
3.12 Introduction to Pointers. 71
Exercises .. 76

Chapter 4

Control Flow. • • • . • • . . • • . • • • • • . • • • • 78

4.1 Conditional Branching . 79
4.2 The switch Statement 89
4.3 Looping. 95
4.4 Nested Loops. .. 107
4.5 A Simple Calculator Program 110
4.6 The break and continue Statements 111
4.7 The goto Statement. .. 113
4.8 Infinite Loops ... 114
Exercises .. 116

Chapter 5

Operators and Expressions . • . . • • . . . • . . • • • . . • • • • • • . •. 118

5.1 Precedence and Associativity 121
5.2 Unary Plus and Minus Operators. .. 124
5.3 Binary Arithmetic Operators. .. 125
5.4 Arithmetic Assignment Operators. .. 128
5.5 Increment and Decrement Operators. .. 132
5.6 Comma Operator. .. 136
5.7 RelationalOperators. .. 138
5.8 LogicalOperators. .. 139
5.9 Bit-Manipulation Operators. .. 143
5.10 Bitwise Assignment Operators 151
5.11 Cast Operator .. 151
5.12 sizeofoperator ... 153
5.13 Conditional Operator (?:) 154
5.14 Memory Operators. .. 155
Exercises .. 156

Chapter 6

Arrays and Pointers. . • • • • • • • .. 158

6.1 Declaring an Array 159
6.2 How Arrays Are Stored in Memory 161

www.manaraa.com

Contents xiii

6.3 'Initializing Arrays .. 162
6.4 Array Example: Encryption and Decryption. 165
6.5 Pointer Arithmetic. .. 167
6.6 Passing Pointers as Function Arguments. .. 168
6.7 Accessing Array Elements Through Pointers 171
6.8 Passing Arrays as Function Arguments .. 173
6.9 Sorting Algorithms 175
6.10 Strings... 178
6.11 Multidimensional Arrays .. 194
6.12 Arrays of Pointers .. 201
6.13 Pointers to Pointers 205
Exercises .. 2] 1

Chapter 7

Storage Classes •• 214

7.1 Fixed VS. Automatic Duration. .. 215
7.2 Scope. .. 219
7.3 Global Variables ... 224
7.4 The register Specifier .. 229
7.5 Summary of Storage Classes 234
7.6 Dynamic Memory Allocation 236
Exercises .. 240

Chapter 8

Structures and Unions. •• 242

8.1 Structures. .. 242
8.2 Linked Lists .. 264
8.3 Unions. .. 271
8.4 enum Declarations 279
Exercises .. 280

Chapter 9

Functions 281

9.1 Passing Arguments 281
9.2 Declarations and Calls .. 284
9.3 Pointers to Functions .. 296
9.4 Recursion. 306
9.5 The main() Function 309

www.manaraa.com

xiv Contents

9.6 Complex Declarations. 310
Exercises .. 314

Chapter 10

The C Preprocessor ••• 316

10.1 Macro Substitution 317
10.2 Conditional Compilation .. 330
10.3 Include Facility .. 335
10.4 Line Control. .. 336
Exercises .. 339

Chapter 11

Input and Output. • . . • . .. 341

11.1 Streams .. 342
11.2 Buffering ... 344
11.3 The <stdio.h> Header File 346
11.4 Error Handling .. 346
11.5 Opening and Closing a File .. 348
11.6 Reading and Writing Data .. 351
11.7 Selecting an I/O Method 358
11.8 Unbuffered I/O .. 360
11.9 RandomAccess .. 361
Exercises .. 372

Chapter 12

Software Engineering 373

12.1 Product Specification. .. 376
12.2 Software Design ... 382
12.3 Project Management and Cost Estimation. .. 389
12.4 Software Tools for Software Production .. 395
12.5 Debugging .. 397
12.6 Testing... 400
12.7 Performance Analysis 401
12.8 Documentation ... 401
Exercises .. 403

Appendix A: The ANSI Runtime Library • • • • • • • • • • • • • • • • . • • • • • • •. 405

A.l Function Names .. 406

www.manaraa.com

Contents xv

A.2 Header Files .. 406
A.3 Synopses... 406
A.4 Functions vs. Macros .. 408
A.5 Error Handling .. 409
A.6 Diagnostics ... 410
A. 7 Character Handling 411
A.8 Setting Locale Parameters .. 413
A.9 Mathematics ... 418
A.I0 Nonlocal Jumps .. 424
A.11 Signal Handling .. 426
A.12 Variable Argument Lists 429
A.13 I/O Functions .. 431
A.14 General Utilities. .. 461
A.15 String-Handling Functions 471
A.16 Multibyte Character Functions 480
A.17 Date and Time Functions .. 483

Appendix B: Syntax of ANSI C ••••••••••••••••••••••••••••••••• 489

Appendix C: Implementation Limits.. • • • • • • ••••••• • • • • •••• • •• • •• 506

C.1 Translation Limits .. 506
C.2 Numerical Limits .. 507

Appendix D: Differences Between the ANSI and K&R
Standards. •• 510

D.1 Source Translation Differences 510
D.2 Data Type Differences .. 512
D.3 Statement Differences 515
D.4 Expression Differences 515
D.5 Storage Class and Initialization Differences 517
D.6 Preprocessor Differences. .. 519

Appendix E: Reserved Names •••••••••••••••••••••••••••••••••• 522

Appendix F: C Interpreter Listing. •• 529

Appendix G: ASCn Codes •••••••••••••••••••••••••••••••••..•• 594

Index ••.•••••••••••••• 596

www.manaraa.com

xvi Contents

List of Figures

Figure 1-1. Language Spectrum 2

Figure 1-2.
Figure 2-1.

Figure 2-2.

Figure 2-3.
Figure 2-4.

Figure 2-5.

Figure 2-6.

Figure 2-7.

Figure 3-1.

Figure 3-2.

Figure 3-3.

Figure 4-1.

Figure 4-2.

Figure 4-3.
Figure 4-4.

Figure 4-5.

Figure 4-6.

Figure 4-7.

Figure 4-8.

Figure 5-1.

Figure 5-2.

Figure 5-3.

Figure 6-1.

Figure 6-2.

Different Compilers for Different Machines 4

Stages of Program Development 10

Compiling and Linking. 11

Software Hierarchy. .. 15

Elements of a Function. .. 18

Anatomy of the square() Function 19

Memory after j = 5 + 10 21

Syntax of an Assignment Statement 25

Hierarchy of C Data Types .. 39

Hierarchy of C Scalar Data Types 57
Dereferencing a Pointer Variable 74

Syntax of an if ... else Statement 79

Braces Ensure Correct Control Flow 86

Logic of a Nested if Statement .. 88
Syntax of a switch Statement .. 91

Syntax of a while Statement .. 95
Flow Control of a while Statement. 96

Syntax of a do ... while Statement 98

Syntax of a for Statement. .. 99

Evaluation of an Expression Enclosed By
Parentheses 122

Representation of an Expression as an Inverted
Binary Tree 123

Arithmetic Assignment Operator Equivalences 131

Syntax of an Array Declaration 159

Storage of an Array 161

Figure 6-3. Initialization of Arrays 163

Figure 6-4. ~assing the Wrong Pointer Type .. 170

Figure 6-5. Storage of a String 180

Figure 6-6. Storage of a Multidimensional Array 195

Figure 6-7. Array of Pointers 202

Figure 6-8. Storage of an Array of Pointers to Strings 204

Figure 6-9. A Pointer to a Pointer 206
Figure 7-1. Hierarchy of Active Regions (Scopes) 220

Figure 8-1. Memory Storage for the vs Structure 244

Figure 8-2. Allocation Without Alignment Restrictions 254

www.manaraa.com

Contents xvii

Figure 8-3. Allocation with Alignment Restrictions 254
Figure 8-4. Syntax of Bit Field Declarations 256
Figure 8-5. Storage of Three Consecutive Bit Fields 257
Figure 8-6. Alternative Storage of Three Consecutive Bit Fields. 257
Figure 8-7. Storage of Two Consecutive Bit Fields 257
Figure 8-8. Storage of the DATE Structure with Bit Fields 259
Figure 8-9. Alternative Storage of the DATE Structure with

Bit Fields 260
Figure 8-10. A Singly Linked List 265
Figure 8-11. Linked-List Insertion 269
Figure 8-12. Linked-List Deletion 269
Figure 8-13. Example of Union Memory Storage 271
Figure 8-14 Storage in example Union After Assignment 272
Figure 9-1. Pass By Reference vs. Pass By Value 282
Figure 9-2. Syntax of a Function Definition 285
Figure 9-3. Syntax of a return Statement 287
Figure 9-4. Syntax of a Function Allusion 289
Figure 9-5. Syntax of a Function Call 291
Figure 9-6. Recursion. 308
Figure 10-1. Syntax of a Function-Like Macro 320
Figure 10-2. Syntax of Conditional Compilation Directives 330
Figure 10-3. Syntax of the #line Directive 336
Figure 11-1. Stream... 342
Figure 12-1. Balanced Binary Tree Implementation of a

Symbol Table 385
Figure 12-2. Unbalanced Binary Tree Implementation of a

Symbol Table 386
Figure 12-3. Typical Software Development Curve 391
Figure 12-4. Time Lines and Milestones for the cint Project. 393
Figure 12-5. Directory Structure for C Interpreter Project

Containing Debug and Edit Subsystems 394

www.manaraa.com

xviii Contents

List of Tables
Table 2-1. Legal and Illegal Variable Names. 23
Table 2-2. Reserved C Keywords 24
Table 3-1. Scalar Type Keywords 40
Table 3-2. Size and Range of Integer Types on Our Machine. 44
Table 3-3. Integer Constants 48
Table 3-4. Types ofInteger Constants 49
Table 3-5. C Escape Sequences 50
Table 3-6. ANSI Trigraph Sequences 51
Table 3-7. Legal and Illegal Floating-Point Constants 54
Table 4-1. Relational Operators .. 82
Table 4-2. Relational Expressions 83
Table 5-1. Precedence and Associativity of C Operators 120
Table 5-2. Unary Arithmetic Operators 124
Table 5-3. Binary Arithmetic Operators 125
Table 5-4. Examples of Expressions Using Arithmetic Operators 126
Table 5-5. Arithmetic Assignment Operators 128
Table 5-6. Examples of Expressions Using Arithmetic

Assignment Operators 132
Table 5-7. The Increment and Decrement Operators 132
Table 5-8. Examples of Expressions Using the Increment and

Decrement Operators 136
Table 5-9. The Comma Operator 136
Table 5-10. The Relational Operators 138
Table 5-11.

Table 5-12.
Table 5-13.

Examples of Expressions Using the Relational
Operators 139
The Logical Operators 139
Truth Table for C's Logical Operators 140

Table 5-14. Examples of Expressions Using the Logical
Operators 141

Table 5-15. The Bit-Manipulation Operators 143
Table 5-16. Examples Using the Shift Operators 144
Table 5-17. Shifting Negative Numbers 145
Table 5-18. Decimal, Hexadecimal, Binary, and Octal Versions

of the Integers Zero Through 15 146
Table 5-19. The Bitwise AND Operator 146
Table 5-20. Examples Using the Bitwise Inclusive OR Operator 146
Table 5-21. Example Using the XOR Operator 147
Table 5-22. Example Using the Bitwise Complement Operator 147

Table 5-23. The Bitwise Assignment Operators 151

www.manaraa.com

Contents

Table 5-24.

Table 5-25.
Table 5-26.

Table 5-27.

Table 6-1.
Table 7-1.

Table 9-1.

Table 11-1.

Table 11-2.
Table 11-3.

Table 11-4.
Table 11-5.

Table 11-6.

Table 12-1.
Table 12-2.

Table A-I.

TableA-2.
Table A-3.

Table A-4.

TableA-5.
TableA-6.

TableA-7.
TableA-8.

TableA-9.

Table E-1.

xix

The Cast Operator. .. 151
The sizeofOperator 154

The Conditional Operator .. 154

The Memory Operators 155

String Functions in the Standard Library 193
Semantics of Storage Class Specifiers 235

Legal and Illegal Declarations in C 313

lopenO Text Modes 348
File and Stream Properties of lope nO Modes 349

I/O to stdin and stdout 369
I/O to files 370

Error-Handling Functions 371
File Management Functions 371

Summary of Programming Style Issues 375

List of Modules in the C Interpreter 383
Header Files for the Runtime Library 407

Character Testing Functions . 412

Trigonometric and Hyperbolic Functions 420
Signal Handling Macros 427

The lopenO Modes 434

printfO Conversion Characters 443
printfO Flag Characters 444

scanlO Conversion Characters 453

Format Specifiers for the ctime() Function 487
Reserved Names 529

www.manaraa.com

xx

Box 2-1

Box 2-2

Box 2-3

Box 3-1

Box 3-2

Box 3-3

Box 3-4

Box 3-5

Box 3-6

Box 3-7

Box 3-8

Box 4-1

Box 4-2

Box 4-3

Box 4-4

Box 4-5

Box 5-1

Box 5-2

Box 5-3

Box 5-4

Box 6-1

Box 6-2:

Box 6-3

Box 6-4

Box 7-1

Box 7-2

Box 7-3

Box 7-4

Box 7-5

Box 7-6

Contents

List of Boxes
Compiling and Linking in a UNIX Environment. 12

The Mailbox Analogy .. 22

Bug Alert - No Nested Comments 28

ANSI Feature - signed Qualifier 44

ANSI Feature - Multibyte Characters 47

ANSI Feature - unsigned Constants 49

ANSI Feature - Trigraph Sequences 51

ANSI Feature -long double Type 52

ANSI Feature - float and long double constants 54

ANSI Feature - Unsigned Conversions 59

Bug Alert - Confusing typedef with #define 69

Bug Alert - Confusing = with == 83

Bug Alert - Missing Braces 87

Bug Alert - The Dangling else .. 89

Bug Alert - Off-By-One Errors 104

Bug Alert - Misplaced Semicolons 106

Bug Alert - Integer Division and Remainder 129

Bug Alert - Side Effects .. 134

Bug Alert - Comparing Floating-Point Values 138

Bug Alert- Side Effects in Relational Expressions 142

ANSI Feature - Initialization of Arrays 164

Bug Alert - Walking Off the End of an Array 176

ANSI Feature - String Concatenation 186

Bug Alert - Referencing Elements in a
Multidimensional Array 198

ANSI Note - Scope of Function Arguments 223

Bug Alert - The Dual Meanings of static 224

Non-ANSI Strategies for Declaring Global
Variables 227

ANSI Feature - The const Storage-Class Modifier 230

ANSI Feature - The volatile Storage-Class
Modifier 232

ANSI Feature - Generic Pointers 239

www.manaraa.com

Contents

Box 8-1

Box 8-1

Box 8-2

Box 8-3

Box 9-1

Box 10-1:

Box 10-2:

Box 10-3:

Box 10-4:

Box 10-5:

Box 10-6:

Box 10-7:

Box 10-8:

Box 10-9:

Box 10-10:

Box 10-11:

Box 11-1

xxi

ANSI Feature - struct and union Name Spaces 252

ANSI Feature - The offset macro 255

Bug Alert - Passing Structures vs. Passing Arrays 258

ANSI Feature - Initializing Unions 275

ANSI Feature - Function Prototypes 293

ANSI Feature - Flexible Formatting of
Preprocessor Lines 317

Bug Alert - Ending a Macro Definition With a
Semicolon 318

Bug Alert - Using = to Define a Macro 321

Bug Alert - Space Between Left Parenthesis and
Macro Name 322

ANSI Feature - Using a Macro Name in Its Own
Definition 324

Bug Alert - Side Effects in Macro Arguments 325

Bug Alert - Binding of Macro Arguments 325

ANSI Feature - String Producer 328

ANSI Feature - Token Pasting 329

ANSI Feature - The terror Directive 337

ANSI Feature - The #pragma Directive 338

Bug Alert - Opening a File 350

www.manaraa.com

Chapter 1

Introduction to Programming

You cannot endow even the best machine with
initiative. - Walter Lippmann, A Preface to
Politics

Although computers are capable of performing complex and difficult operations,
they are inherently simple-minded and docile machines. They must be told
exactly what to do, and they must be instructed in a precise and limited language
that they can comprehend. These instructions are known as software. The
machinery that actually executes the instructions is known as hardware.

At the hardware level, computers understand only simple commands, such as
"copy this number," "add these two numbers," and "compare these two numbers."
These modest commands constitute the computer's instruction set and programs
written using these instructions are said to be written in the computer's machine
language.

One of the surprising aspects of computer science is the rich array of useful
operations that can be performed by combining these simple instructions. Unfor
tunately, it is extremely tiresome to write programs in machine language because
even the simplest tasks require many instructions. Moreover, in most machine
languages, everything-instructions, data, variables-is represented by binary
numbers. Binary numbers are composed entirely of zeroes and ones (each digit is
called a bit, short for "binary digit"). These programs, consisting of a jumble of
zeroes and ones, are difficult to write, read, and maintain.

www.manaraa.com

2 Chapter 1

In the 1940s and 1950s, all programs were written in machine language, or its
close cousin, assembly language. Assembly language is a major improvement
over machine language, although it is only once removed from the computer's
instruction set. In assembly language, each instruction is identified by a short
name rather than a number, and variables can be identified by names rather than
numbers. Programs written in assembly language require a special program,
called an assembler, to translate assembly language instructions into machine
instructions. Today, programs are written in assembly language only when execu
tion speed is a high priority.

The vast majority of programs written today are written in languages called
high-level languages that were first developed in the 1950s and 1960s. High-lev
ellanguages allow programmers to write programs in a language more natural to
them than the computer's restrictive language.

One can view programming languages as lying along a spectrum with machine
languages at one end and human languages, such as French and English, at the
other end (see Figure 1-1). High-level programming languages fall somewhere in
between these extremes, usually closer to the machine language. High-level
languages allow programmers to deal with complex objects without worrying
about details of the particular computer on which the program is running. Of
course programming languages differ from human languages since they are de
signed solely to manipulate information. They are much more limited and precise
than human languages.

high-level languages

assembly languages

Figure 1-1. Language Spectrum. Computer languages lie along a
spectrum with machine languages at one end and
human languages at the other end.

www.manaraa.com

Introduction

1.1 High-Level Programming
Languages

3

Every high-level language requires a compiler or interpreter to translate instruc
tions in the high-level programming language into low-level instructions that the
computer can execute. The remainder of this section applies only to compilers.
We describe interpreters in Chapter 12.

A compiler is similar to an assembler, but much more complex. There is a
one-to-one correspondence between assembly language instructions and machine
instructions. In contrast, a single instruction in a high-level language can produce
many machine instructions.

The farther a programming language is from a machine language, the more
difficult it is for the compiler to perform its task. But languages that are far
removed from the computer architecture offer two main advantages:

• High-level languages remove the programmer from the idiosyncracies of
each computer architecture.

• Programs written in high-level languages are easier to read and maintain.

Once a programmer has learned a high-level language, he or she need not be
preoccupied with how the compiler translates programs into a machine language.
As a result, programs written for one computer can be executed on another
computer merely by recompiling them. This feature is known as software
portability. In Figure 1-2, for instance, a single program written in a high-level
language is translated into three machine language programs by three separate
compilers.

Another advantage of high-level languages is readability. Their relative close
ness to human languages makes programs not only easier to write, but easier to
read as well. The operation of a well-written program in a high-level language
can be readily apparent to a reader because the symbols and instructions resemble
human symbols and instructions rather than the computer's internal symbols and
instructions. In contrast, even the best-written assembly language programs must
be closely analyzed to construe their operation. For example, consider the simple
C statement

a = b+c-2;

which assigns the value "b plus c minus 2" to a, where a, b, and c are variables.

www.manaraa.com

4

In assembly language, this could be written

LOAD b, %rO
LOAD c, %rl
ADD %rO, %rl
SUB &2, %rl
STORE %rl, a

Chapter 1

Obviously, the C version is easier to read and understand.

machine
language

program for
computer X

program written in a
high-level language

machine
language

program for
computer Y

machine
language

program for
computer Z

Figure 1-2. Different Compilers for Different Machines. The same
program written in a high-level language can be
compiled into different machine language programs to
run on different computers.

Closely related to readability is maintainability. Because they are more readable,
programs written in high-level languages are much easier to modify and debug.

Despite these advantages, there are prices to pay when using high-level lan
guages. The most important price that must be paid is reduced efficiency. When a
compiler translates programs into machine language, it may not translate them
into the most efficient machine code. Just as it is possible to use different words
to say the same thing, it is also possible to use different machine instructions to
write functionally equivalent programs. Some combinations of instructions ex
ecute faster than others. By writing directly in the machine language, it is usually
possible to select the fastest version. Writing in a high-level language, the pro
grammer has little control over how a compiler translates code. The result,
especially when an unsophisticated compiler is used, can be inefficient code.

www.manaraa.com

Introduction 5

Nevertheless, high-level languages are superior to machine and assembly lan
guages in most instances. For one thing, sophisticated compilers can perform
tricks to gain efficiency that most assembly language programmers would never
dream of. The main reason for the superiority of high-level languages, however,
is that most of the cost of software development lies in maintenance, where
readability and portability are crucial.

The issues raised-portability, efficiency, and readability-are central concepts
that we will revisit throughout this book. Many of the assumed advantages of
high-level languages, such as portability and readability, are only realized through
careful programming. Likewise, the disadvantages, such as reduced efficiency,
can be mitigated once the language is well understood.

1.2 History of C
The C language was first developed in 1972 by Dennis M. Ritchie at AT&T Bell
Labs as a systems programming language-that is, a language to write operating
systems and system utilities. Operating systems are the programs that manage the
computer's resources. Well-known examples of operating systems include MS/
DOS and OS/2 for IBM PC-compatible computers, VMS for VAXes, and UNIX,
which runs on a variety of computers.

Ritchie's intent in designing C was to give programmers a convenient means of
accessing a machine's instruction set. This meant creating a language that was
high-level enough to make programs readable and portable, but simple enough to
map easily onto the underlying machine.

C was so flexible, and enabled compilers to produce such efficient machine code,
that in 1973, Ritchie and Ken Thompson rewrote most of the UNIX operating
system in C. Traditionally, operating systems were written in assembly language
because execution speed was critical and because only assembly languages gave
programmers the full control they needed to access special memory locations.
The coding of UNIX in C demonstrated C's value as a systems programming
language.

The main advantages of writing an operating system in a high-level language are
speed of implementation and maintainability. A fortuitous side-effect, however,
is that the operating system can be moved to other computers by recompiling it on
the target machines. This process is called porting. UNIX was originally written
for a DEC PDP-7 in a language called B (C's predecessor). Later, UNIX was
ported to a PDP-II and recoded in C. Before long, UNIX was ported to other
types of computers. Every port required a new C compiler so the fortunes of C
and UNIX were tightly bound. For C, this was both good and bad. On the one
hand, the language spread more quickly than it might have on its own. On the
other hand, C was, in many people's minds, strictly a UNIX systems language. It
is only in recent years that C has come to be viewed as a more general-purpose
programming language.

www.manaraa.com

6 Chapter 1

Throughout most of its history, the only fonnal specification for the C language
was a document written by Ritchie entitled The C Reference Manual. In 1977,
Ritchie and Brian Kernighan expanded this document into a full-length book
called The C Programming Language (often referred to as the K&R standard).
Though a useful reference guide for programmers, it was unsatisfactory for com
piler builders because too many details were omitted. Despite its shortcomings, it
remained for years the only C text and acquired the status of a de facto standard.

In the early days of C, the language was used primarily on UNIX systems. Even
though there were different versions of UNIX available, the versions of the C
compiler maintained a large degree of unifonnity. The version of C running
under UNIX is known as PCC (Portable C Compiler). Like the K&R standard,
PCC also became a de facto standard.

With the emergence of personal computers (PCs) and the growing popularity of
C, however, the K&R and PCC standards were no longer satisfactory. Suddenly,
C compilers were being written to run on new machines and under different
operating systems. It became difficult or impossible to adhere to the original
standards. Another problem was that C was such a small language that compiler
developers felt a strong temptation to add their own favorite constructs. Before
long, there were many variants of C, each differing in little ways.

One of C's original strengths had been its portability, but over the years it lost this
advantage. Programs written for one compiler could not be guaranteed to com
pile correctly on another computer. Eventually, the American National Standards
Institute (ANSI) fonned a subcommittee to define an official version of the C
language.

1.3 ANSI Standard
The American National Standards Institute is the foremost standards organization
in the United States. ANSI is divided into a number of committees that have
responsibility for approving standards that cover a particular technical area. The
X3 Committee, chartered in 1961, is responsible for Computer and Infonnation
Processing Standards.

In February of 1983, James Brodie of Motorola Corporation applied to the X3
Committee to draft a C standard. ANSI approved the application, and in March
the X3Jll Technical Committee of ANSI was fonned. X3Jll is composed of
representatives from all the major C compiler developers, as well as representa
tives from several companies that program their applications in C. In the summer
of 1983, the committee met for the first time, and they have been meeting four
times a year since then. The final version of the C Standard was ratified as an
ANSI standard in 1989.

www.manaraa.com

Introduction 7

The ANSI Standard for the C language is specified in a document entitled
American National Standardfor Information Systems-Programming Language
C. In addition to this specification, there is a Rationale Document, which clearly
explains the goals of the X3J 11 Committee:

The Committee's overall goal was to develop a clear, consistent, and unam
biguous Standard for the C programming language which codifies the
common, existing definition of C and which promotes the portability of user
programs across C language environments ...

The work of the Committee was in large part a balancing act. The Commit
tee has tried to improve portability while retaining the definition of certain
features of C as machine-dependent. It attempted to incorporate valuable
new ideas without disrupting the basic structure and fabric of the language.
It tried to develop a clear and consistent language without invalidating exist
ing programs. All of the goals were important and each decision was
weighed in the light of sometimes contradictory requirements in an attempt
to reach a workable compromise ..

Although the official standard was ratified only recently, it has been stable in draft
form for several years. ANSI-conforming compilers, therefore, are already be
coming commonplace.

To obtain copies of the ANSI Standard and Rationale Document, send your
request to:

American National Standards Institute
1430 Broadway
New York, NY 10018

1.4 Nature of C

The C programming language has acquired the reputation (not entirely unde
served) for being a mysterious and messy language that promotes bad
programming habits. Part of the problem is that C gives special meanings to many
punctuation characters, such as asterisks, plus signs, braces, and angle brackets.
Once a programmer has learned the C language, these symbols look quite com
monplace, but there is no denying that a typical C program can be intimidating to
the uninitiated.

www.manaraa.com

8 Chapter 1

The other, more serious, complaint concerns the relative dearth of rules. Other
programming languages, such as Pascal, have very strict rules to protect program
mers from making accidental blunders. It is assumed in Pascal, for instance, that
if a programmer attempts to assign a floating-point number (same as a real
number) to a variable that is supposed to hold an integer, it is a mistake, and the
compiler issues an error message. In C, the compiler quietly converts the float
ing-point value to an integer.

The C language was designed for experienced programmers. The compiler,
therefore, assumes little about what the programmer does or does not intend to do.
This can be summed up in the C tenet:

Trust the programmer.

As a result, C programmers have tremendous liberty to write unusual code. In
many instances, this freedom allows programmers to write useful programs that
would be difficult to write in other languages. However, the freedom can be, and
is, abused by inexperienced programmers who delight in writing needlessly tricky
code. C is a powerful language, but it requires self-restraint and discipline.

One of our main points made repeatedly throughout this book is that there is a
huge difference between good programs and working programs. A good program
not only works. but is easy to read and maintain. Despite what some people
claim, it is very possible to write good programs in C. Unfortunately, many C
programmers are content to write programs that merely work.

www.manaraa.com

Chapter 2

C Essentials

"A little learning is a dangerous thing." -
Alexander Pope, An Essay on Criticism

One of the hardest parts about learning a programming language is that every
thing is interrelated. It often seems impossible to understand anything before you
know everything. In this chapter, we describe the C essentials - what you need
to know to write your first programs. To avoid getting bogged down in details,
we gloss over some of the intricacies of the C language in this chapter. In later
chapters, we provide a more thorough discussion of the topics introduced in this
chapter.

2.1 Program Development
Program development consists of a number of steps, as shown in Figure 2-1.
Some of the latter steps vary from one computing environment to another. In this
chapter, we describe these latter development stages in general terms. (Box 2-1
describes how to develop a program in a UNIX environment.) You should read
the system documentation for your computer to find out how to compile and link
programs in your particular environment.

www.manaraa.com

10

Redefine
problem

Design an algorithm to
solve the problem

Test and debug executable
.. ---.. ~ program

Figure 2-1. Stages of Program Development.

Chapter 2

The first step in developing a program is to clearly define the problem and design
an algorithm to solve it. An algorithm is a well-defined set of rules to solve a
particular problem in a finite number of steps. The art of programming consists
of designing or choosing algorithms and expressing them in a programming
language. This stage of the development process is extremely important, though
it is often given short shrift by beginners and experts alike. We'll have more to
say about the design stage in later sections of the book. For now, we are con
cerned with the later stages of software development that occur after you have
defined the problem and designed an algorithm.

As shown in Figure 2-2, there are three general steps:

1. Edit each source file.

2. Compile each source file to produce an object file.

3. Link the object files together to produce an executable program.

Note that the source and object code can be spread out in multiple files, but the
executable code for a program generally resides in a single file. Box 2-1 briefly
describes how these steps appear in a UNIX environment.

www.manaraa.com

C Essentials

source
file

1
compile

object
file

source
file

I
compile

object
file

Executable
Code

source
file

compile

object
file

source
file

1
compile

object
file

Runtime
Library

Figure 2-2. Compiling and Linking. Source files must be compiled
to produce object files. The separate object files are
then linked together to form the executable file.

2.1.1 Compiling Source Files

11

By the end of the design stage, you should have defined a set of routines, called
functions, each of which solves a small piece of the larger programming problem.
The next step is to actually write the code for each function. This is usually done
by creating and editing C language text files. These files are called source files.

www.manaraa.com

12

Box 2-1: Compiling and Linking in a UNIX
Environment

Chapter 2

In UNIX environment, you edit the ource file with a text editor, such as ed
or vi. To compile the program, you invoke the compiler with the cc com
mand, followed by the name of the ource file. For example,

$ cc test . c

The dollar ign i a command prompt that ignifie that the operating system
i waiting for u er input. Different operating y tems use different charac
ter for the command prompt. Throughout this book, we shade characters
emitted by the computer to differentiate them from characters that you enter
from the keyboard.

U IX requires the names ofC source files to end with a .c exten ion. lfyour
ource fLle contains errors, the compiler prints out the error mes age , but

doe not create an object file . If the program is error-free, the compiler pro
duces an object file with the same name as the ource file except that it ha a
.oexten ioninsteadofa.cextension. Under UNIX,thecccommand al oin
voke the linker and produces an executable file called a .out by default. You
can override thi default filename by u ing the -0 option. For example.

$ cc -0 test test . C

forces the executable file to be named test. If the cc command contain only
one ource filename, then the object file i deleted. However, you can peci
fy multiple ource file in the ame compilation command. The UNIX cc
program compile each one of them eparately creating an object file for
each. and then it link all the object file togetherto create an executable file.
For in tance, the command

$ ' cc -0 test modulel . c module2 . c module3 . c

produce four file -three object file called modI/lei .0, module2.0, and
module3.o, and an executable file called test. To run the program, you enter
the executable filename at the command prompt:

$ test

The loading stage is handled auromatically when you execute a program.

www.manaraa.com

C Essentials 13

The task of the compiler is to translate source code into machine code. How the
compiler does this is beyond the scope of this book. Suffice it to say that the
compiler is itself a program (or group of programs) that must be executed. The
compiler's input is source code and its output is object code. Object code repre
sents an intermediary step between the source code and the final executable code.
The final steps are handled by two additional utilities called the linker (or binder)
and the loader.

2.1.2 Linking Object Files

After creating object files by invoking the compiler, you would combine them
into a single file by invoking the linker. In addition to combining object files, the
linker also links in functions from the runtime library if necessary. The result of
the linking stage is an executable program.

Although linking is handled automatically by some operating systems (e.g.,
UNIX), the linker is actually a separate program. In some environments it must
be invoked separately.

2.1.3 Loading Executable Files

There is one additional step that is often ignored because it is usually handled
automatically by the operating system. This is the loading stage, in which the
executable program is loaded into the computer's memory. Most operating
systems automatically load a program when you type the name of its executable
file. A few operating systems, however, require you to explicitly run a loader
program to get your program into memory.

2.1.4 The Runtime Library

One of the reasons C is such a small language is that it defers many operations to
a large runtime library. The runtime library is a collection of object files. Each
file contains the machine instructions for a function that performs one of a wide
variety of services. The functions are divided into groups, such as I/O (Input and
Output), memory management, mathematical operations, and string manipula
tion. For each group there is a source file, called a header file, that contains
information you need to use these functions. By convention, the names for header
files end with a .h extension. For example, the standard group of I/O functions
has an associated header file called stdio.h.

www.manaraa.com

14 Chapter 2

To include a header file in a program, you must insert the following statement in
your source file:

#include <filename>

For example, one of the I/O runtime routines, called printf(), enables you to
display data on your tenninal. Before you use this function, you should enter the
following line in your source file:

#include <stdio.h>

Usually, this would be one of the first lines in your source file. We describe the
#include directive and other preprocessor commands in more detail later in this
chapter.

2.2 Functions
The most important concept underlying high-level languages is the notion of
functions. In other languages, they may be called subroutines or procedures, but
the idea is the same. A C function is a collection of C language operations. A
function usually perfonns an operation that is more complex than any of the
operations built into the C language. At the same time, a function should not be
so complex that it is difficult to understand.

Typically, programs are developed with layers of functions. The lower-level
functions perfonn the simplest operations, and higher-level functions are created
by combining lower-level functions. The following, for instance, is a low-level
function that calculates the square of a number. This is a simple function, yet it
perfonns an operation that is not built into the C language.

int square (nUffi)
int nUffi;

int answer;

answer = nUffi * nUffi;
return answer;

As shown in Figure 2-3, software engineering rests on the concept of hierarchies,
building complex structures from simple components.

www.manaraa.com

C Essentials

Machine Instructions: At the lowest level ,

every program consists of primitive

machine instructions.

Language Statements: High- level languages

consist of statements that perform one or

more machine instructions.

Functions: Functions consist of

groups of language statements.

Programs: Programs

consist of groups

of functions.

Figure 2-3. Software Hierarchy. Software engineering is based on a
hierarchy of programming components.

15

You can think of function names as abbreviations for long, possibly complicated
sets of commands. You need only define a function once, but you can invoke (or
cal{) it any number of times. This means that any set of operations that occurs
more than once is a candidate for becoming a function. Functions are more than
just a shorthand, however. They enable you to abstract information. This means

www.manaraa.com

16 Chapter 2

that a complex operation can be constructed out of simpler operations. This
yields two benefits:

1. Ease of change and enhanced reliability. If you need to change program
behavior, either to fix a problem or to adapt to new requirements, the
change need only be made in one place because there is only one copy of
each function. Remember, needless redundancy is the hobgoblin of soft
ware engineers!

2. Better readability. With the low-level details of an algorithm hidden away
in functions, the algorithm is easier to read. In fact, even if a set of opera
tions is used only once in a program, it is sometimes worthwhile to make it
a function if it aids readability.

A function is like a specialized machine that accepts data as input, processes it in
a defmed manner, and hands back the results. For example, the square() function
takes a number as input and returns the square of the number as the result.
Whenever we want to know the square of a number, we "call" the square function.

The key to using functions successfully is to make them perform small pieces of a
larger problem. Ideally, however, each piece should be general enough so that it
can be used in other programs as well. For example, suppose you want to write a
program that counts the number of words in a file. The best way to approach this
programming problem is through a method called top-down design and stepwise
refinement. The basic idea behind this methodology is to start with a description
of the task in your natural language and then break it into smaller, more precise
tasks. Then, if necessary, divide those smaller tasks into still smaller operations
until you arrive at a group of low-level functions (called primitives) that can be
employed to solve the original problem.

As an example, let's start with the task

Count the number of words in afile

As the first step in the refinement process, we can divide this step into the
following steps:

open the file;
while there are more words in the file

read a word;
increment the word count;

print the word count;
close the file.

www.manaraa.com

C Essentials

Finally, we can refine the steps even further by expanding read a word:

open the file;

while there are more words in the file

read characters until you get a non-space character;
read characters until you get a space character;

increment the word count;

print the word count;

close the file.

17

Before you actually write the code for a program, you should write down the steps
as we have. This outline of the program is called pseudocode because the steps
are written in a shorthand language that is somewhere between your natural
language and the programming language. Once you've written the pseudocode, it
is usually fairly easy to translate it into a high-level language.

Many of the steps shown in the pseudocode can be broken down even further.
However, these steps are sufficiently low-level because there are runtime func
tions to perform them. For example, there is anfopen() function that opens a file,
anfgetc() function that reads a character from a file, a printf() function that prints
text, andanfcloseO function that closes a file. Of course, you won't always be so
lucky as to have all the routines available. Sometimes you'll need to write your
own. However, the runtime library does contain a powerful set of primitives, so
you should always check it before writing your own function. Appendix A
describes the functions in the runtime library.

One point worth stressing is that functions should be small, yet general. The
fopenO function, for example, is written so that you can pass it any filename and it
will open the corresponding file. In fact,fopen() is even more general, allowing
you to specify whether the file contains text or numeric data, and whether it is to
be opened for read or write access. This is a good illustration of the principle that
the best functions perform small autonomous tasks, but are written so that the
tasks can be easily modified by changing the input.

As you develop a program, dividing it into functions, you are likely to learn more
about the particular problem you're trying to solve. Don't be discouraged, there
fore, if you find it hard to go from the original problem statement to the C
language source code. Like everything, it gets easier with practice.

www.manaraa.com

18 Chapter 2

2.3 Anatomy of a C Function
Since functions are the building blocks of all C programs, they are a good place to
start describing the C language. The general layout is shown in Figure 2-4,
although some of the elements are optional. The required parts are the function
name, the parentheses following the function name, and the left and right braces,
which denote the beginning and the end of the function body. The other elements
are optional.

arguments

Figure 2-4. Elements of a Function. The shaded components are
optional.

The function shown in Figure 2-5 is the square() function that we introduced
earlier. The figure identifies all of the function's components.

We'll describe each line in turn. The first line has three parts. The first word, int,
is a reserved keyword that stands for "integer." It signifies that the function is
going to return an integer value. There are about thirty keywords in C, each of
which has a language-defined meaning. Keywords are always written in lower
case letters and are reserved by the C language, which means that you may not use

www.manaraa.com

C Essentials 19

them as names for variables. (The complete list of keywords appears in Table
2-2.)

The second word, square, is the name of the function itself. This is what you use
to call the function. We could have named the function anything, but it is best to
use names that remind you of what the function actually does. The parentheses
following the name of the function indicate that square is, in fact, a function and
not some other type of variable. num is the name of the argument.

,.-.------------ function type

1
...----------- function name

!-------- argument name +
int square (nurn
int nurn;" ... --------- argument declaration

int answer,l'II t-----J----- variable declaration

answer = nurn*nurn
<4-1----return answer;

C statements

L--_______ ---l I----- function body

Figure 2-5. Anatomy of the squareO Function.

Arguments represent data that are passed from the calling function to the function
being called. On the calling side, they are known as actual arguments; on the
called side, they are referred to as formal arguments. As with naming functions,
we could give the argument any name we want, but num seems sufficiently
descriptive.

Functions can take any number of arguments. For example, a function that
computes x to the y power would take two arguments, separated by a comma (the
spaces between the parentheses and the arguments are optional):

int power (x, y)

The second line of the square() function is an argument declaration. Again, we
use the keyword int, which signifies that the input is going to be an integer. The
semicolon ending the line is a punctuation mark indicating the end of a statement
or declaration.

The function body contains all of the executable statements. This is where
calculations are actually performed. The function body must begin with a left
brace and end with a right brace.

www.manaraa.com

20 Chapter 2

The line following the left brace is a declaration of the integer variable called
answer. Program variables are names for data objects whose values can be used
or changed. The declaration of answer follows the same format as the declaration
of num, but it lies within the function body. This indicates that it is not an
argument to the f}lnction. Rather, it is a variable that the function is going to use
to hold a value temporarily. Once the function finishes, answer becomes inacces
sible. All variables declared within a function body must be declared
immediately after a left brace.

The next line is the first executable statement--that is, the first statement that
actually performs a computation. It is called an assignment statement because it
assigns the value on the right-hand side of the equal sign to the variable on the
left-hand side. You would read it as: "Assign the value of num times num to
answer." The symbol * is an operator that represents multiplication and "=" is an
operator that represents assignment. Assignment is the process of storing the
value of the expression on the right-hand side of the equal sign in the data object
represented by the left-hand side ofthe equal sign.

The next srat~ment is a return statement, which causes the function to return to
its caller. Th~ return statement may optionally return a value from the function,
in this ~ase answer.

Before proceeding, we need to take a closer look at some of these function
comp6rlf.~nt~-particularly variables, variable names, constants, expressions, and

I

assignment statements.

2.3.1 Variables and Constants
The statement

j = 5+10;

seems straightforward enough. It means "add the values 5 and 10 and assign the
result to a variable called j." But there are actually a number of underlying
assumpti0!1s that give this statement meaning. It seems intelligible to us only
because we are accustomed to dealing with the symbols involved. We know that
"5" and "10" are integer values, "+" and "=" are operators, ";" delimits the end of
the statement, and j is a variable whose value can be changed. To the comput
er, however, all of these symbols are merely different combinations of on/off bits.
To make sense out of the expression, a computer must be told at some point what
each of these symbols means. This is one of the functions of the compiler.

The compiler knows that when it sees a combination of digits 0 through 9, it is
looking at an integer value. If there is a period within the string of digits (i.e.,
3.141), then it is looking at a floating-point number. These are just two out of a
multitude of rules that the compiler uses to make sense out of a program. This
stage of the compiler, where such rules are used to identify operators, delimiters,

www.manaraa.com

C Essentials 21

numbers, and names, is c~lled lexical analysis. Later, a parse stage will examine
these computer parts of speech to see if they have been combined legally.

Two important programming tokens are constants and variables. As their names
imply, a constant is a value that never changes, whereas a variable can represent
different values. Consider again the statement

j = 5+10;

The symbols "5" and "10" are constants because they have the same value no
matter where they appear in a program. The symbol j, on the other hand, is the
name of a variable that is able to represent different values. After this statement,
j will have the value 15, but we could make another assignment later in the
program that would give it a different value. A variable achieves its "variable
ness" by representing a location, or address, in computer memory.

Variable

Memory

Address

2482

2486

2490

Contents

+- 4 bytes -.

~ ~

II

15 II

I

Figure 2-6. Memory after j = 5 + 1 0 . (We assume that j
requires four bytes of storage, as shown by the
addresses.)

The variable j is located at some address, say 2486. So the assignment statement
really means: "add the constants 5 and 10, and then store the result at memory
address 2486" (see Figure 2-6).

The statement

j = j - 2;

says "fetch the contents of address 2486, subtract the constant 2 from it, and store
the result at 2486." In this case the value of j is first read and then a new value is
written. Box 2-2 describes a useful analogy for thinking about computer memory.

www.manaraa.com

22 Chapter 2

Box 2-2: The Mailbox Analogy

A good way to think about memory is a a erie of majlboxe . where each
box ha a unique addres . A thou and boxe would have addre e from 0
through 999 (in C. a in mo t computer • addressing begin at zero in tead of
one). Tn ide each box isa slip of paper with a number on it. To torethevalue
5 in box 200,you would open the box, erase whatevernumberi on the lipof
paper, and write a 5 on it. To ee what is in box 350, you would open the box
and read the value on the slip of paper. and then return the lip unchanged.
The only re trictions on the mailboxes are that each one can hold only one
lip of pap r, or value, at a time.

It i a mall conceptual jump from the mailbox example to computer
memory. The proce e are identical with one small addition in the computer
model. In a computer, it ometimes takes more than one mailbox to tore a
value. A large integer, for example, might require four byte. or mailboxes.
In thi ca e, the compiler would store the value by opening four con ecutive
mailboxe and writing a portion of the number in each. To r ad the value, it
would again need to open all four mailboxes.

A computer language let you give a mailbox a name 0 that you need not re
member it numeric addres . Whenever you declare a variable, the compiler
finds an unused mailbox and bind the addre s of the unu ed box to the vari
able name. Then when you u e the variable name in an expre ion, the
compiler knows what box to open.

2.3.2 Names

In the C language, you can name just about anything: variables, constants, func
tions, and even locations in a program. The rules for composing names are the
same regardless of what you are naming. Names may contain letters, numbers,
and the underscore character _, but must start with a letter or underscore. Names
beginning with an underscore, however, are generally reserved for internal system
variables.

The C language is case sensitive, which means that it differentiates between
lowercase and uppercase letters. So the names

VaR
var
VAR

www.manaraa.com

C Essentials 23

are all different. The advantage of case sensitivity is that you have more names to
choose from, but it also means that you should follow strict naming conventions
to ensure readability and maintainability.

A name cannot be the same as one of the reserved keywords (see Table 2-2). Also,
you should avoid using names that are used by the runtime library unless you
really want to create your own version of a runtime function. See Appendix C for
a complete list of reserved names. Table 2-1 shows some legal and illegal names.

j
j5

Legal Names

system name
sesquipedalial name
UpPeR_aNd_LoWeR_cAsE_nAmE

5j
$name
int
bad%#*@name

Illegal Names

Names may not begin with a digit.
Names may not contain a dollar sign.
int is a reserved keyword.
Names may not contain any special
character except an underscore.

Table 2-1. Legal and Illegal Variable Names.

There is no C-defmed limit to the length of a name, although each compiler sets
its own limit. The ANSI Standard requires compilers to support names of at least
31 characters. Some older compilers impose an 8-character limit.

www.manaraa.com

24 Chapter 2

auto double int struct
break else long switch
case enum register typedef
char extern return union
canst float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Table 2-2. Reserved C Keywords. You may not use these as
variable names.

There is some strategy involved in choosing names that make your program easier
to understand. When, for instance, do you use uppercase, when do you use
lowercase, and when do you use the underscore characters? Also, when is a
single-letter name like i or m suitable and when should a name be longer and more
meaningful? These are questions that we'll address as we proceed. As a general
rule, you should use lowercase letters for variable names and uppercase
for macro names. Another important and obvious rule-but one that is often
overlooked-is to choose names that reflect their use. For instance, a variable
that is used to store the fractional part of a floating-point value could be called
fractional_ part.

2.3.3 Expressions
An expression is any combination of operators, numbers, and names that denotes
the computation of a value. For example, all of the following are expressions:

5
j
5 + j
5 * j + 6

f()
f () /4

A constant
A variable
A constant plus a variable
A constant times a variable plus a
constant
A function call
A function call, whose result is
divided by a constant

The building blocks of expressions include variables, constants, and function
calls. There are additional building blocks, but these are enough to get started.
The building blocks by themselves are expressions, but they can also be combined

www.manaraa.com

C Essentials 25

by operators to fonn more complex expressions. There are literally dozens of
operators, but the following are some of the most basic ones:

+

*

Addition
Subtraction
Multiplication
Division

Chapter 5 describes operators and expressions in detail.

2.3.4 Assignment Statements

The square() function contains one example of an assignment statement:

answer = num * num;

The general fonnat of an assignment statement is shown in Figure 2-7. The
expression on the right-hand side of the assignment operator is sometimes called
an rvalue. The left-hand side of an assignment statement, called an [value, must
evaluate to a memory address that can hold a value. Originally, the tenn "lvalue"
was coined to define the expression on the left-hand side of an assignment expres
sion. However, this definition has been loosened over the years to mean any
expression that represents a memory address-some lvalues refer to constants
whose values cannot be changed. Still, the distinction between lvalues and
rvalues is a useful one. For example, it wouldn't make any sense to tum the
previous assignment statement around,

num * num = answer;

because the expression num * num is not an lvalue-it does not represent a
memory location.

Ivalue t----0-----I rvalue ,--~·O

Figure 2-7. Syntax of an Assignment Statement.

www.manaraa.com

26 Chapter 2

2.4 Formatting Source Files
One aspect of C programming that can be confusing to beginners or ex-FOR
TRAN programmers is that newline characters in the source code are treated
exactly like spaces (except when they appear in a character constant or string
literal). A newline is a special character that causes subsequent characters to
appear on the beginning of the next line. Whenever you press the RETURN key
on your keyboard, a newline is generated. Because C ignores new lines, we could
have written the square() function as

int square (num) int num; { int answer;
answer = num*num; return answer;

While this is equally readable to the computer, it is less readable to humans, and is
therefore considered poor programming style. The compiler doesn't care how
many spaces or new lines you insert between program components. For example,
the following is also legal:

int
square (num)
int num

answer
answer

int

* num;
return answer;

num

Again, this is an example of poor programming style. Note, in addition that,
unlike FORTRAN, you cannot insert spaces within names or keywords.

Like other programming languages, the C language requires a conscious effort on
the programmer's part to use consistent and readable conventions. Our own style,
exhibited in the examples throughout the book, represents our personal prefer
ence, but is by no means the only good way to write programs. The main points
to keep in mind are readability and consistency.

2.4.1 Comments

A comment is text that you include in a source file to explain what the code is
doing. Comments are for human readers-the compiler ignores them. Comment
ing programs is an important, though often neglected, aspect of software
engineering. The C language allows you to enter comments by inserting text
between the symbols i* and *i. In the following example, the asterisks that begin
each line are included to aid readability--only the first and last ones are required.

www.manaraa.com

C Essentials

/* square ()
* Author: P. Margolis
* Initial coding: 3/87
* Purpose:
* This function returns the square of its
* argument.
*/

int square (num)
int num;

int answer;

answer = num *num;/*Does not check for overflow*/
return answer;

The compiler ignores whatever characters appear within the comment delimiters.
Note that a comment can span multiple lines. Formatting comments so they are
readable but do not interrupt the flow of the program is difficult in all languages,
including C. One method is to devote entire lines to comments. Another is to put
comments to the right of the code. You should use this second method only if the
comment can fit on a single line. We use both formats in examples throughout the
book. Nested comments are not allowed in C, as described in Box 2-3.

A more important issue is what to comment. In general, you should comment
anything that is not obvious. This includes complex expressions, data structures,
and the purpose of functions. In fact, all functions should contain a header
comment that describes what the function does. It is also useful to comment
changes to programs so that you can keep track of modifications. This is particu
larly important if you are working on a small piece of a larger project. However,
comments without information content can make a program difficult to read. Do
not comment the obvious. The following, for example, is poor commenting style:

j j + 1; /* increment j */

Also, lengthy comments cannot compensate for unreadable code. Commenting
is largely a stylistic issue for which it is difficult to impose hard-and-fast rules.
The best way to learn is by studying the examples in this book and other code
written by experienced programmers.

www.manaraa.com

28 Chapter 2

Box 2-3: Bug Alert - No Nested Comments
You cannot place comments within comments to form ne ted comment .
For example,

/* This is an outer comment
* /* This is an attempted inner comment */

*
* This will be interp reted as code .
*/

C identi fie the begi nning of a comment by the character sequence /*. It then
trip all character up to, and including, the end comment sequence */.

What's left gets passed to the compiler to be furtherproce ed. In the exam
pie above. therefore. the compiler will delete everything up to the fir t */
sequence. but pass the re t to the compiler. So the compiler will attempt to
process

*
* Th is will be interpreted as code .
*/

Not recognizing these line a valid C tatements. the compiler will i ue an
error message.

2.5 The main() Function
Having written and compiled the function square(), we still can't quite execute it.
Every executable program must contain a special function called main(), which is
where program execution begins. The main() function can call other functions.
For example, to invoke square(), you could write

main ()
{

extern int square();
int solution;

solution = square(5);
exit (0);

This assigns the square of 5 to the variable named solution. The rules governing a
main() function are the same as the rules for other functions. Note, however, that
we don't identify the function's data type and we don't declare any arguments.
This is a convention that we adopt for now. main() actually does return a value
and it takes two arguments. We defer a discussion of these aspects until Chapter
9.

www.manaraa.com

C Essentials 29

The exit() function is a runtime library routine that causes a program to end,
returning control to the operating system. If the argument to exit() is zero, it
means that the program is ending normally without errors. Nonzero arguments
indicate abnormal termination of the program. Calling exit() from a main()
function is exactly the same as executing a return statement. That is,

exit (0);

is the same as

return 0;

You should include either exit() or return in every main() function. (For ANSI
conforming compilers, you need to include the stdlib.h header file wherever you
call the exit() function.)

We declare two names in main(). The first is the function square(), which we are
going to call. The special keyword extern indicates that square() is defined
elsewhere, possibly in another source file. The other variable, solution, is an
integer that we use to store the value returned by square().

The next statement is the one that actually invokes the square() function. Note
that it is an assignment statement, with the right-hand side of the statement being
the function invocation. The argument 5 is placed in parentheses to indicate that
it is the value being passed as an actual argument to square(). You will recall that
square()'s name for this passed argument is num. The square() function then
computes the square of num and returns it. The return value gets assigned to
solution in the main() function.

We now have a working program, but it is not particularly useful for a couple of
reasons. One problem with this program is that there is no way to see the answer.
In this simple case, it's obvious that the variable solution gets the value 25, but
suppose we pass square() a larger value whose square we don't already know. We
need to add a statement that prints out the value of solution so we can see it.
There are a number of runtime routines that can display data on your terminal, but
the most versatile is printf(). Adding printf() to our program gives us the prO'gram
shown on the next page.

www.manaraa.com

30 Chapter 2

#include <stdio.h> /* Header file of printf() */

main()
{

extern int square();
int solution;

solution = square(27);
printf("The square of 27 is %d\n", solution);
exit (0);

Note that we need to include the header file stdio.h because printf() is an I/O
function. We describe the printf() function in more detail later in this chapter. For
now, all you need to know is that %d is a special code that indicates to the printf()
function that the argument to be printed is a decimal integer. The actual output
will be the value stored in solution. The \n sequence is a special sequence that
forces printf() to output a newline character, causing the cursor to move to the
beginning of the next line.

Assuming main() is stored in a source file called getsquare.c, and square() is
located in a file called square.c, you could compile and link this program with the
following command (in a UNIX environment):

$ cc -0 getsquare getsquare.c square.c

To run the program, type getsquare at the prompt:

$ getsquare

The square of 27 is 729

$

The getsquare program still isn't very useful, however, since it can only print the
square of one number. To find out the squares of other numbers, we would have
to edit the source file, change the argument to square(), and then recompile,
relink, and reexecute the program. It would be better if we could dynamically
specify which number we want to square while getsquare is running. To do this,
we need to use another runtime routine called scanf(). scanf() is the mirror
function to printf(). Whereas printf() outputs the value of a variable, scanf() reads
data entered from the keyboard and assigns them to variables.

Adding scanf() to our program, we get

www.manaraa.com

C Essentials

#include <stdio.h>

main()
{

extern int square();
int solution;
int input_val;

printf("Enter an integer value: ");
scanf("%d", &input_val);
solution = square (input_val);
printf("The square of %d is %d\n", input_val,

solution);
exit (0);

31

Note that we declare another variable, input_val, to store the value entered from
the keyboard. We then pass this value as the argument to square(). The expres
sion,

&input val

means "the memory address of input_val." We pass the address of input_val so
that scanf() can store a value at that address. The & symbol is an important C
operator that we discuss in more detail in Chapter 3. A typical execution of
getsquare would be:

$ getsquare
Enter an integer value: 8
The square of 8 is 64

$

We can execute this program any number of times, giving it different input with
each execution.

2.6 The printf() Function
The printf() function can take any number of arguments. The first argument,
however, is special. It is called the format string and it specifies how many data
arguments are to follow and how they are to be formatted. The format string is
enclosed in double quotes, and may contain text and format specifiers. A format
specifier is a special character sequence that begins with a percent sign (%) and
indicates how to write a single data item.

www.manaraa.com

32 Chapter 2

For example, in the statement

printf("The value of num is %d", num);

there are two arguments. The first is the format string

"The value of num is %d"

The second is the data item, in this case a variable called num. The format string
can be broken down further into two parts: a text string

The value of num is

and a format specifier

%d

The %d specifier indicates that the first data item, num, is a decimal integer.
There are other specifiers for other types of data. Following is a partial list:

%c
%f
%s
%0
%x

Character data item
Floating-point data item
Null-terminated character array (string)
Octal integer
Hexadecimal integer

We describe these specifiers and others in later chapters. In addition to specifying
the type of data to be printed, you can also specify such attributes as left justifica
tion, right justification, padding characters, and whether a plus sign should be
printed for positive numbers. These details are described in Appendix A.

For now, the only additional thing you need to know about printf() is that the
format string can contain any number of format specifiers, but there must be a
data argument for each one. For example,

! f 1 1
printf("Print three values: %d %d %d", numI, num2, num3);

Note that the first format specifier corresponds to the first data item, the second
specifier to the second data item, and so on. We separate each specifier by a space
so that a space will be printed before each number. Otherwise the numbers would
be printed one after the other without any separation.

www.manaraa.com

C Essentials 33

The data items can also be expressions, such as num *num:

printf("The square of %d is %d\n", num, num*num);

The backslash (\) followed by n forms a special symbol called an escape se
quence. When escape sequences are sent to an output device, such as a terminal,
they are interpreted as signals that control the format of display. The \0 escape
sequence forces the system to output a newline. There are other escape se
quences, which we describe in the next chapter.

2.6.1 Continuation Character
To span a quoted string over more than one line, you must use the continuation
character, which is a backslash. For example, here's a program that uses the
continuation character to print a long string:

main ()
{

printf("This string is too long to fit on one \
line, so I need to use the continuation \
character.");

Prior to the ANSI Standard, the continuation character could only be used to
continue character strings. The Standard extended this notion so that you can now
stretch variable names over multiple lines. For the sake of readability, however,
you should use the continuation character sparingly. (The ANSI Standard sup
ports an alternative notation for extending strings across multiple lines. This
feature is described in Chapter 6.)

2.7 The scanf() Function
The scanf() function is the mirror image of printf(). Instead of printing data on
the terminal, it reads data entered from the keyboard. The format of scanf() is
similar to printf(). Like printf(), scanf() can take any number of arguments, but
the first argument is a format string. scanf() also uses many of the same format
specifiers. The specifier %d, for example, indicates that the value to be read is an
integer. The major difference between scanf() and printf() is that the data item
arguments must be lvalues and they must be preceded by the address of operator
&. For example,

scanf("%d", &num);

directs the system to read integer input from your terminal and store the value in
the variable called num. The ampersand is a special operator that finds the
address of a variable. We discuss it in more detail in the next chapter.

www.manaraa.com

34 Chapter 2

The best way to learn how to use printf() and scanf() is to experiment with them.
The exercises at the end of this chapter suggest some programs you can write. You
can also look at the complete descriptions of printf() and scan/() in Appendix A.

2.8 The Preprocessor
You can think of the C preprocessor as a separate program that runs before the
actual compiler. It is automatically executed when you compile a program, so
you don't need to explicitly invoke it. The preprocessor has its own simple
grammar and syntax that are only distantly related to the C language syntax. All
preprocessor directives begin with a pound sign (#), which must be the fIrst
nonspace character on the line.

Unlike C statements, a preprocessor directive ends with a newline, not a semico
lon.

We discuss the preprocessor in detail in Chapter 10. For now, we need only take a
closer look at the #include facility, already mentioned in connection with header
fIles, and a new preprocessor command called #define.

2.8.1 The Include Facility
The preprocessor #include directive causes the compiler to read source text from
another fIle as well as the fIle it is currently compiling. In effect, this enables you
to insert the contents of one fIle into another fIle before compilation begins,
although the original fIle is not actually altered. This is especially useful when
identical information is to be shared by more than one source fIle. Rather than
duplicating the information in each fIle, you can place all the common informa
tion in a single fIle and then include that fIle wherever necessary. Not only does
this reduce the amount of typing required, but it also makes program maintenance
easier, since changes to the shared code need only be made in one place. The
#include command has two forms:

#include <filename>

and

#include "filename"

If the fIlename is surrounded by angle brackets, the preprocessor looks in a
special place designated by the operating system. This is where all system
include fIles, such as the header fIles for the runtime library, are kept. If the
fIlename is surrounded by double quotes, the preprocessor looks in the directory
containing the source fIle. If it can't fInd the include file there, it searches for the
fIle as if it had been enclosed in angle brackets. By convention, the names of
include fIles usually end with an .h extension.

www.manaraa.com

C Essentials 35

Consider what happens when the preprocessor encounters the command

#include <stdio.h>

The preprocessor searches in the system-defmed directory for a file called stdio.h,
and then replaces the #include command with the contents of the file. We won't
show you the entire stdio.h file because it's long and complicated and varies from
one compiler to another. But a typical section of the file looks like the following:

/* Definitions of functions compiled separately
* that don't return int's.
*/

extern FILE *fopen(),*fdopen(),*freopen(), *popen(),
*tmpfile () ;

extern long ftell();
extern char *gets(), *fgets(), *ctermid(),

*cuserid(), *tempnam(), *tmpnam();

These are declarations of functions in the runtime library. As a simpler example
of how the #include directive works, suppose you have a file called glob
al_ decs .h, which contains the following:

int global_counter;
char global_char;

Then in a source file you use the #include directive:

#include "global_decs.h"
main()
{

When you compile the program, the preprocessor replaces the #include directive
with the contents of the specified file, so the source file looks like

int global_counter;
char global_char;
main()
{

www.manaraa.com

36 Chapter 2

2.8.2 The #define Directive
Just as it is possible to associate a name with a memory location by declaring a
variable, it is also possible to associate a name with a constant. You do this by
using a preprocessor directive called #define. For instance,

#define NOTHING 0

binds the name NOTHING to the constant zero. The two symbols NOTHING and
o now mean the same thing to the compiler. The statements

j 5 + 0;
j 5 + NOTHING;

are exactly the same.

The rules for naming constants are the same as the rules for naming variables, but
you must be careful not to confuse the two. For example, having defined NOTH
ING as zero, you cannot write

NOTHING = j + 5;

any more than you can write

o = j + 5;

In both cases, the compiler should issue an error since you are attempting to
change the value of a constant. To avoid confusion between constants and
variables, it is a common practice to use all uppercase letters for constant names
and lowercase letters for variable names.

Naming constants has two important benefits. First, it enables you to give a
descriptive name to a nondescript number. For example,

#define MAX PAGE WIDTH 80

Now, in your program you can use MAX_PAGE _WIDTH, which means some
thing, instead of "80," which doesn't tell you much. Creative naming of
constants can make a program much easier to read.

The other advantage of constant names is that they make a program easier to
change. For example, the maximum page width parameter might appear dozens
of times in a large text formatting program. Suppose that you want to change the
maximum width from 80 to 70. If, instead of using a constant name, you used the
constant 80, you will need to change 80 to 70 wherever it appears and hope that
you are changing the right 80's. If you use a constant name, you need only change
the definition,

#define MAX PAGE WIDTH 70

and recompile.

www.manaraa.com

C Essentials 37

Exercises
1. Write a main() routine that prints Hello world.

2. Write a function that returns the cube of its argument. The function and ar
gument should be declared as ints:

int cube (num)
int num;

3. Write a function called fourth yow() that returns the fourth power of its ar
gument. Use square() in your solution. Then write a main() function that
calls fourth yowO.

4. Write a main() function that reads an integer from the terminal, finds its
cube by calling cube(), and prints the cube.

5. Link main() and cube() together and run them.

6. In what ways does a computer program resemble a living organism? (See
Douglas Hofstadter's Godel, Escher, Bach for an in-depth discussion of
computer and biological hierarchies.)

7. Write pseudocode for a program that strips comments from a C source
file.

8. Which of the following names cannot be used to name variables? Why are
they illegal?

var VAR INT
int p.s p_s
p$s p#s qqqqqqqqqq
double p?s_ 2 ggg_234_456
double var struct structure
l2fff @f default
ok not ok void
VOID Void voId

12 _bufp

9. The following function contains a number of bugs. Find the bugs and fix
them.

main (x)
{

scanf("How many bugs are in this programs?,
prob_count)

printf(This program has %d problems\n,
prob_count);

www.manaraa.com

Chapter 3

Scalar Data Types

What's in a name? That which we call a rose
By any other name would smell as sweet. - Shakespeare,
Romeo and Juliet

The ability to divide data into different types is one of the most important
features of modern programming languages. It enables you to work with
relatively complex objects instead of the more mundane objects that the comput
er manipulates at its lowest level. You can deal with integers, characters, and
floating-point numbers, all of which are familiar entities. At the bit and byte
level, the computer may not understand these concepts. It is up to the compiler,
therefore, to make sure that the computer handles bits and bytes in a way
consistent with their data type. A data type is really just an interpretation
applied to a string of bits.

The C language offers a small but useful set of data types. There are eight
different types of integers and two types of floating-point objects (three with the
ANSI Standard). In addition, integer constants can be written in decimal, octal,
or hexadecimal notation. These types-integers and floating points-are called
arithmetic types. Together with pointers and enumerated types, they are known
as scalar types because all of the values lie along a linear scale. That is, any
scalar value is either less than, equal to, or greater than any other scalar value.

In addition to scalar types, there are aggregate types, which are built by combin
ing one or more scalar types. Aggregate types, which include arrays, structures,

www.manaraa.com

Scalar Data Types 39

and unions, are useful for organizing logically related variables into physically
adjacent groups. There is also one type-void-that is neither scalar nor aggre
gate. Figure 3-1 shows the logical hierarchy of C data types.

This chapter describes scalar variables and constants and the void type. Chapters
6 and 8 describe aggregate types.

Figure 3-1. Hierarchy of C Data Types.

3.1 Declarations
Every variable must be declared before it is used. A declaration provides the
compiler with information about how many bytes should be allocated and how
those bytes should be interpreted. To declare j as an integer, you would write

int j;

The word iot is a reserved word that specifies the integer data type. There are
nine reserved words for scalar data types, as shown in Table 3-1.

www.manaraa.com

40

char

int

float

double

enum

short

long

Chapter 3

signed

unsigned

Table 3-1. Scalar Type Keywords.

The first five-char, int, float, double, and enum-are basic types. The
others-long, short, signed, and unsigned-are qualifiers that modify a basic
type in some way. You can think of the basic types as nouns and the qualifiers
as adjectives.

As a shorthand, you can declare variables that have the same type in a single
declaration by separating the variable names with commas. You could declare j
and k with

int j,k;

which is the same as

int j;
int k;

All the declarations in a block must appear before any executable statements.
The order in which they are declared, however, usually makes no difference.
For instance,

int j, k;
float x,y,z;

is functionally the same as

float x;
int k;
int j;
float z,y;

It is usually a good idea to group declarations of the same type together for easy
reference.

All of our examples so far have used single-character variable names, which
seems to contradict our earlier advice about using meaningful names. However,
single-character names are acceptable in certain circumstances, particularly in
short example programs and test programs. To make them a bit more meaning
ful, there is a convention borrowed from FORTRAN. The names i,j, k, m, and n
are generally used for integer counters and temporary variables; x, y, and z are
used for floating-point temporary variables; and c is used for temporary charac-

www.manaraa.com

Scalar Data Types 41

ter variables. You should never use the single-character names I (el) or 0 (oh),
since they are easily confused with the digits 1 (one) and 0 (zero).

3.1.1 Declaring the Return Type of a Function
Just as you can declare the data type of a variable:you can also declare the type
of value returned by a function. The following declares loo() to be a function
that returns a value of type float:

float foo (arg)
int arg;
{

Unlike other variables, functions have a default return type (int) if you do not
explicitly give them a return type. For example,

foo ()
{

declares a function loo() whose return type is into Many programmers use this
convention, although we recommend that you explicitly enter the int type to
make the program more readable. Some programmers also omit the return type
for functions that return no value. This was acceptable in older compilers that
did not support another syntax for declaring such functions. More modem C
compilers, however, support the void type, which allows you to explicitly de
clare that a function does not return a value. See Section 3.12 for more about
void.

3.2 Different Types of Integers
Although int is the basic integer data type, it is also the least descriptive. On all
machines, an int is treated as an integer in that it cannot hold fractional values,
but it has different sizes on different machines. Some compilers allocate four
bytes for an int while others allocate only two bytes. (Still others allocate three
bytes or just one byte.) In addition, the size of a byte is not constant. On most
machines, a byte is eight bits, but there are even exceptions to this rule.

The only requirements that the ANSI Standard mak.es is that a byte must be at
least eight bits long, and that ints must be at least 16 bits long and must represent
the "natural" size for the computer. By natural, they mean the number of bits

www.manaraa.com

42 Chapter 3

that the CPU usually handles in a single instruction. In our examples throughout
the book, we assume that a byte is eight bits and that an int is four bytes.

If you don't care how many bytes are allocated, you can use into If the size
matters, however, you should use one of the size qualifiers, short or long. On
most machines, a short int is two bytes and a long int is four bytes. To declare
j as a short int and k as a long int, you would write

short int j;
long int k;

The compiler would allocate at least two bytes for j and at least four for k. Note
that since the number of bytes is different, the range of values is different, as
shown in Table 3-2. If you need to store values less than -32,768 or greater than
32,767, you should obviously use a long into

The compiler is smart enough to infer int even if you leave it out. You could
write, for example,

short j;
long k;

In the interest of brevity, most C programmers use this shorthand.

The number of bits used to represent an integer type determines the range of
values that can be stored in that type. Consider, for example, a 16-bit short into
Each bit has a value of 2 to the power of n where n represents the position of the
bit:

For instance, the decimal value 9 would be represented by setting bits 0 and 3:

o 0 000 0 0 0 0 0 0 0 1 001
23 + 2° = 8 + 1 = 9

To represent negative numbers, most computers use two's complement notation.
In two's complement notation, the leftmost bit (called the most significant bit
because it represents the largest value) is a sign bit. If it is set to one, the number
is negative; if it's zero, the number is positive. To negate a binary number, you
must first complement all the bits (change zeroes to ones, and ones to zeroes),
and then add 1 to it. To get -9, for instance, you would first complement the
bits, giving you

www.manaraa.com

Scalar Data Types 43

1 1 1 1 1 1 1 111 1 1 0 1 1 0

Then you would add one:

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

There is a less popular notation called one's complement, in which you simply
complement the bits to negate a number, without adding one. While this nota
tion may seem simpler, it has several drawbacks, one of which is that there are
two representations for zero:

000 0 0 0 0 0 0 0 0 0 0 0 0 0

and

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

In two's complement notation, there is only one representation for zero because
after complementing the bits you add one, which zeroes all the bits again.

One of the interesting, and valuable, features of two's complement notation is
that -1 is represented by all bits being set to one. It also follows that the largest
positive number that can be represented occurs when all but the sign bit are set.
This value is 2(n - I} - 1 where n is the number of bits. The largest negative
value is -2(n - I}.

Table 3-2 shows sizes and ranges of integer types for our machine. (See Appen
dix D for the minimum ranges that must be supported by an ANSI-conforming C
compiler.)

3.2.1 UnSigned Integers
There are a number of instances where a variable will have to hold only non-ne
gative values. For instance, variables that are used to count things are often
restricted to non-negative numbers. The C language allows you to declare that a
variable is non-negative only (or unsigned), thereby doubling its positive range
(the most significant bit will not be a sign bit). A signed short int has a range
of -32,767 to 32,767, whereas an unsigned short int has a range of 0 to 65,535.

To declare an integer variable as being nonnegative only, use the unsigned
qualifier, as in

unsigned int k;
unsigned short m;
unsigned long n;

You can also use unsigned by itself, as in

unsigned p;

www.manaraa.com

44 Chapter 3

which is the same as unsigned int. The K&R standard supports only unsigned
ints - the other types of unsigned integers are ANSI extensions. In addition,
the ANSI Standard supports the signed qualifier, as described in Box 3-1.

Box 3-1 : ANSI Feature - signed Qualifier

The ANSI Standard recognizes a new keyword called signed, which
pecifically makes a variable capable of holding negative as well as

non-negative values. In mo t cases, variable are signed by default, so
that the igned keyword i upertluou. The one exception i with the
char type, which can be either igned or un igned by default, depending
on the whim of the compiler developer. Mo t compiler use signed
char a the default. Keep in mind that the signed keyword is new and
may not be implemented on your compiler.

Size
Type (in bytes) Value Range

int 4 -2 31 to 2 31 -1
short int 2 _2 15 to 2 15 -1
long int 4 - 2 31 to 2 31 - 1

unsigned short int 2 Ot02 16 -1
unsigned long int 4 o to 2 32-1

signed char 1 _27 to 27-1
unsigned char 1 o to 2 8 -1

Table 3-2. Size and Range of Integer Types on Our Machine.

www.manaraa.com

Scalar Data Types 45

3.2.2 Characters and Integers

Most programming languages make a distinction between numeric and character
data. The number "5" is a number while the letter "A" is a character. In reality,
though, even characters are stored in the computer as numbers. Every character
has a unique numeric code. There are various codes, two of the most common
being ASCII, which stands for American Standard Code for Information Inter
change, and EBCDIC (Extended Binary-Coded Decimal Interchange Code),
which is what IBM uses on its larger computers. Appendix G contains a full list
of the ASCII character set. The examples in this section assume an ASCII code
set since it is the most prevalent in C implementations. For most codes, all
character values lie within the range 0 through 255, which means that a character
can be represented in a single byte. (Character sets for certain languages, such as
Kanji, require more than 256 character codes. To represent text using these
character sets, you can take advantage of ANSI C's multibyte character feature.
See Box 3-2 for more information.)

In C, the distinction between characters and numbers is blurred. There is a data
type called char, but it is really just a I-byte integer value that can be used to
hold either characters or numbers. For instance, after making the declaration

char c;

you can make either of the following assignments:

c = , A' ;

c = 65;

In both cases, the decimal value 65 is loaded into the variable c since 65 is the
ASCII code for the letter 'A'. Note that character constants are enclosed in
single quotes. The quotes tell the compiler to get the numeric code value of the
character. For instance, in the following example, a gets the value 5, whereas b
gets the value 53 since that is the ASCII code for the character "5".

char a , b;
a 5;
b = '5';

The following program reads a character from a terminal and then displays the
code value of the character. The %c format in the scan/{) call indicates that the
data item to be read is a character. The %d format in the printf() call tells the
function to output the character in its integer form.

www.manaraa.com

46 Chapter 3

/* Print the numeric code value of a character */

#include <stdio.h>

main ()
{

char Chi

printf("Enter a character:");
scanf("%c", &ch);
printf("Its numeric code value is: %d\n", ch);
exit (0);

Because chars are treated as small integers, you can perform arithmetic opera
tions on them. In the following lines, j gets the value 131 since 'A' equals 65
and 'B' equals 66.

int j;
j='A'+'B'i

In the ASCII character set, character codes are ordered alphabetically. For exam
ple, an uppercase 'A' , for example, is 65, a 'B' is 66, ... a 'z' is 90. Lowercase
letters start at 97 and run through 122. This makes it fairly easy to implement a
function that changes a character from uppercase to lowercase:

char to lower (ch)
char Chi

return ch +32;

However, if you assume an ASCII character set, and add or subtract 32, your
program will fail when you run it on a machine that uses EBCDIC or some other
character code. To avoid this problem, the C runtime library contains two
functions called toupper() and tolower() that change a character's case. These
functions, described in Appendix A, are guaranteed to work the same in all
implementations. For maximum portability, therefore, you should use these
functions rather than writing your own.

www.manaraa.com

Scalar Data Types 47

Box 3-2: ANSI Feature - Multibyte Characters

The English character er contains only 26 letters. Even when you con
ider upperca e and lowercase letters, numerals, and punctuation, the total

number of ymbol one need to expre s something in the Engli h lan
guagei relatively mall. The ASCII character code define 128
ymbol , which i quite sufficient. Every English character, therefore,

can fit in a ingle byte ince a byte allows for 256 unique code.

Other languages, however, have much larger character sets. The written
Japanese language, for example, contain thou ands of characters. Ob
viously, one byte is not ufficient to uniquely repre em each character.

To allow for programming in languages other than Engli h, the ANSI
Standard upport muiribyre characters. When multibyte characters are
activated, the runtime environment interpret two or more uccessive
byte a a single character. The actual number of byte used and the
character code depend on the implementation.

For more information about multibyte characters, refer to the appropriate
runtime routine in Appendix A. In particular, Sections A.8 and A.16
describe how to u e multi byte characters.

3.3 Different Kinds of Integer
Constants

We have already seen a few integer constants, 5, 10, and 2. These are called
decimal constants since they represent decimal numbers. You can also write
octal and hexadecimal constants. An octal constant is written by preceding the
octal value with the digit zero. A hexadecimal constant is written by preceding
the value with a zero and an x or X. Table 3-3 shows some decimal constants
and their octal and hexadecimal equivalents.

Note that negative numbers are preceded with a minus sign just as in algebraic
notation. (Strictly speaking, negative numbers are really expressions, not con
stants.) Non-negative numbers may be preceded by an optional plus sign. (The
plus sign is an added feature of the ANSI Standard which has a nonintuitive
meaning. We discuss its impact in Chapter 5.) Note also that you cannot include
a comma or a decimal point in an integer constant.

An octal constant cannot contain the digits 8 and 9 since they are not part of the
octal number set. (This restriction was not present in the K&R standard.)

www.manaraa.com

48 Chapter 3

Decimal Octal Hexadecimal

3 003 Ox3
8 010 Ox8

15 017 OxF
16 020 Ox10
21 025 Ox15

-87 -0127 -ox57
187 0273 OxBB
255 0377 Oxff

Table 3-3. Integer Constants.

The scanf() and printf() functions have format specifiers for reading and writing
octal and hexadecimal numbers. For octal numbers, the format specifier is 0; for
hexadecimal numbers the format specifier is x. The following program reads a
hexadecimal number (with or without the Ox prefix) from the terminal and prints
its decimal and octal equivalents.

/* Print the decimal and octal equivalents of a
* hexadecimal constant.
*/

#include <stdio.h>

main ()
{

int num;

printf("Enter a hexadecimal constant: ");
scanf("%x", &num);
printf("The decimal equivalent of %x is: %d\n",

num, num);
printf ("The octal equivalent of %x is: %o\n",.

num, num);
exit (0);

The number of bytes allocated for an integer constant varies from machine to
machine, depending on the relative sizes of the integer types. In general, an
integer constant has type int if its value can fit in an into Otherwise, it has type
long int. More precisely, the ANSI Standard states that the type of an integer
constant is the first in the corresponding list in which its value can be repre
sented. The list is shown in Table 3-4.

www.manaraa.com

Scalar Data Types

Form of Constant

Unsuffixed decimal

Unsuffixed octal or
hexadecimal

Suffixed by u or U

Suffixed by I or L

List of Possible Types

int, long int, unsigned long int

int, unsigned int, long int,
unsigned long int

49

unsigned int, unsigned long int

long int, unsigned long int

Table 3-4. Types of Integer Constants.

If a constant is too large to fit into the longest type in its list, the results are
unpredictable. Many compilers simply truncate the value and then load it into
memory, whereas others produce an error message.

It is also possible to specifically designate that a constant have type long int by
appending an I or L to the constant (we recommend that you use an uppercase L
since it is easy to confuse a lowercase I with the digit 1). For example,

55L
0777776L
-OXAAAB321L

Note that octal and hexadecimal constants may also be long.

Box 3-3: ANSI Feature - unsigned Constants

The A SI Standard allow you to apply the unsigned qualifier to a
constant. Thi is done by appending a u or U to the con tant, a 10

55u
077743U
Oxfffu

This syntax, though supported by the ANSI Standard, is new, so older
compilers may give you an error if you try to use it.

www.manaraa.com

50 Chapter 3

3.3.1 Escape Character Sequences

We have already used the \n escape sequence, which represents a newline. The
full list of escape sequences is shown in Table 3-5 (\a and \v are ANSI exten
sions, though they are available on many older compilers).

\a (alert) Produces an audible or visible alert signal.
\b (backspace) Moves the cursor back one space.
\f (form feed) Moves the cursor to the next logical page.

\n (newline) Prints a newline.
\r (carriage return) Prints a carriage return.
\t (horizontal tab) Prints a horizontal tab.
\v (vertical tab) Prints a vertical tab.

Table 3-5. C Escape Sequences.

In addition to the escape sequences listed in Table 3-5, C also supports escape
character sequences of the form,

\octal-number
and

\hex-number

which translates into the character represented by the octal or hexadecimal
number. For example, if ASCII representations are being used, the letter 'a' may
be written as '\141' and 'z' as '\132'. This syntax is most frequently used to
represent the null character as '\0'. This is exactly equivalent to the numeric
constant zero (0). Note that the octal number does not include the zero prefix as
it would for a normal octal constant. To specify a hexadecimal number, you
should also leave out the zero so that the prefix is an x (uppercase X is not
allowed in this context). Support for hexadecimal sequences is an ANSI exten
sion. The ANSI Standard also supports trigraph sequences, as described in Box
3-4.

www.manaraa.com

Scalar Data Types 51

Box 3-4: ANSI Feature - Trigraph Sequences

Becau e certain character u ed by the C language are not available on
every computer keyboard, the ANSI Standard adopted a new format for
repre enting the e character . Trigraph equences con i t of two question
mark followed by a third character. During the translation stage, the
compiler converts the e equence into a ingle character, as shown in
Table 3-6. For example. the following line of ource code:

printf("Print a newline ??/n");

becomes

printf("Print a newline \nN);

Note that this feature is not available on older compilers and may, in fact.
break exi ting code that accidentally contain trigraph equence .

Trigraph
Sequence

Resulting
Character

??= # (pound sign)

??([(left bracket)

??I \ (backs lash)

??)] (right bracket)

??' /I. (caret)

??< { (left brace)

??! I (bar)

??> } (right brace)

??- - (tilde)

Table 3-6. ANSI Trigraph Sequences.

www.manaraa.com

52 Chapter 3

Box 3-5: ANSI Feature -long double Type

The ANSI Standard supports an additional floating-point type called long
double. This is a new type so it may not be implemented by many
compilers. long doubles are intended to provide even greater range and
precision than doubles. On many machines, however, long double and
double are synonymous.

The long double declaration was added by the ANSI Committee because
some architectures support more than two floating types.

3.4 Floating-Point Types
Integers are fine for many occasions but they are inadequate for representing
very large numbers and fractions. For this, you need floating-point types.
There are two ways to write floating-point constants, the simplest being to place
a decimal point in the number. For example,

0.356
5.0
0.000001

.7
7.

are all legal examples of floating-point constants. To declare a variable capable
of holding one of these values, you use the float or double keyword. For
example,

float pi;
double pi squared;

pi = 3.141;
pi squared = pi * pi;

The word double stands for double-precision, because on many machines it is
capable of representing about twice as much precision as a float. The precision
refers to the number of decimal places that can be represented. On many
machines, ~ double also takes up twice as much memory. A float generally
requires four bytes, and a double generally requires eight bytes, although these
sizes are not strict requirements. The internal representation of floating-point
values is incorPorated into the hardware architecture of each computer and is one
of the least st~ndardized aspects of computers. You should read the documenta
tion fOf y~l.lf particular compiler to discover the range and precision of floats and
doubles (these limits are also listed in the <limits.h> header file that comes with
the A~~I runtime library).

www.manaraa.com

Scalar Data Types 53

The following function takes a double value as an argument that represents a
temperature in Fahrenheit and converts it to Celsius.

/* Convert a float value from Fahrenheit to Celsius
*/

double fahrenheit to celsius (temp_fahrenheit
double temp_fahrenheit;
{

double temp_celsius;

temp_celsius = (temp_fahrenheit - 32.0) *
100.0/(212.0 - 32.0);

return temp_celsius;

The following function computes the area of a circle, given a radius.

/* Given the radius, find the area of a circle.
*/

#define PI 3.14159

float area_of_circle(radius)
float radius;
{

float area;

area = PI*radius*radius;
return area;

Note that we use the #define feature to create a constant called PI. This is better
than embedding the numeric constant in the code since the name PI is more
meaningful than the string of digits 3.14159.

3.4.1 Scientific Notation
Scientific notation is a useful shorthand for writing lengthy floating-point values.
In scientific notation, a value consists of two parts: a number called the

mantissa followed by a power of 10 called the characteristic (or exponent). The
letter e or E, standing for exponent, is used to separate the two parts. The
floating-point constant 3e2, for instance, is interpreted as 3* 102, or 300. Like
wise, the value -2.5e-4 is interpreted as -2.5* 10-4 , or -0.00025. The examples
in Table 3-7 show some legal and illegal floating-point constants.

www.manaraa.com

54 Chapter 3

Legal Illegal

3.141 35 No decimal point or exponent
.3333333333 3,500.45 Commas are illegal

0.3 4E The exponent sign must be followed
3e2 by a number

5E-5 4e3.6 The exponent value must be an
3.7e12 integer

Table 3-7. Legal and Illegal Floating-Point Constants.

Box 3-6: ANSI Feature - float and long double
constants

By default, all floating-point con tant have type double. The ANSI
Standard, however, allow you to override thi rule by appending an for
F (0 the con tant to make it float , or an I or L to make it long double.
For example,

3 . 5 /* A double constant */
3 . 5f /* A float constant */
3 . 5e3L /* A long double */

The e uffixes are useful for forcing floating-point ex pres ion to be
computed with either single or double preci ion, as explained in Section
3.9.3.

3.5 Initialization
A declaration allocates memory for a variable, but it does not necessarily store
an initial value at the location (fixed duration variables, discussed in Chapter 7,
are an exception). If you read the value of such a variable before making an
explicit assignment, therefore, the results are unpredictable. For example, try the
following program:

#inc lude <stdio .h>

main ()
{

int x;

printf("The value o f x i s : %d \ n", x);
exit(0);

www.manaraa.com

Scalar Data Types 55

The output when you execute this program could be just about anything since x
gets the value of whatever is left over in memory from the previous program
execution. Because you often want a variable to start with a particular value, the
C language provides a special syntax for initializing a variable. Essentially, you
just include an assignment expression after the variable name in a declaration.
For example,

char ch = 'A';

allocates one byte for ch, and also assigns the character' A' to it. The initializa
tion is really just a shorthand for combining a declaration statement and an
assignment statement. The previous initialization, for instance, is exactly the
same as:

char Chi
ch = 'A';

3.6 Mixing Types
The C language allows you to mix arithmetic types in expressions with few
restrictions. For example, you can write:

num = 3 * 2.1;

even though the expression on the right-hand side of the assignment is a mixture
of two types, an int and a double. Also, the data type of num could be any scalar
data type except a pointer.

To make sense out of an expression with mixed types, C performs conversions
automatically. These implicit conversions make the programmer's job easier but
put a greater burden on the compiler, since it is responsible for reconciling mixed
types. This can be dangerous since the compiler may make conversions that are
unexpected. For example, the expression

3.0 + 1/2

does not evaluate to 3.5 as you might expect. Instead, it evaluates to 3.0.

www.manaraa.com

56 Chapter 3

Implicit conversions, sometimes called quiet conversions or automatic conver
sions, occur under four circumstances:

1. In assignment statements, the value on the right side of the assignment is con
verted to the data type of the variable on the left side. These are called
assignment conversions.

2. Whenever a char or short int appears in an expression, it is converted to an into
unsigned chars and unsigned shorts are converted to iniif the int can repre
sent their value; otherwise they are converted to unsigned int (see Box 3-7).
These are called integral widening conversions.

3. In an arithmetic expression, objects are converted to conform to the conver
sion rules of the operator.

4. In certain situations, arguments to functions are converted. This type of con
version is described in detail in later chapters.

As an example of the first type of conversion, suppose j is an int in the following
statement:

j = 2.6;

Before assigning the double constant to j, the compiler converts it to an int,
giving it an integral value of 2. Note that the compiler truncates the fractional
part rather than rounding to the closest integer.

The second type of implicit conversion, called integral widening or integral
promotion, is almost always invisible.

To understand the third type of implicit conversion, we first need to describe
briefly how the compiler processes expressions. The discussion that follows is
only cursory-we describe expressions in detail in Chapter 5.

3.6.1 Implicit Conversions in Expressions

When the compiler encounters an expression, it divides it into subexpressions,
where each sUbexpression consists of one operator and one or more objects,
called operands, that are bound to the operator. For example, the expression

-3 / 4 + 2.5

contains three operators: -, I, and +. The operand to - is 3; there are two
operands to I, -3 and 4; and there are two operands to +, -3/4 and 2.5.

www.manaraa.com

Scalar Data Types 57

long double

double I
float I

unsigned
long int I
long int I

unsigned I
int I

Figure 3-2. Hierarchy of C Scalar Data Types.

The minus operator is said to be a unary operator because it takes just one
operand, whereas the division and addition operators are binary operators. Each
operator has its own rules for operand type agreement, but most binary operators
require both operands to have the same type. If the types differ, the compiler
converts one of the operands to agree with the other one. To decide which
operand to convert, the compiler resorts to the hierarchy of data types shown in
Figure 3-3 and converts the "lower" type to the "higher" type. For example,

1 + 2.5

involves two types, an int and a double. Before evaluating it, the compiler
converts the int into a double because double is higher than int in the type
hierarchy. The conversion from an int to a double does not usually affect the
result in any way. It is as if the expression were written

1.0 + 2.5

www.manaraa.com

58 Chapter 3

The rules for implicit conversions in expressions can be summarized as follows.
Note that these conversions occur after all integral widening conversions have
taken place.

• If a pair of operands contains a long double. the other value is converted to
long doub'e.

• Otherwise. if one of the operands is a double. the other is converted to
double.

• Otherwise. if one of the operands is a float. the other is converted to a float.

• Otherwise. if one of the operands is an unsigned long into the other is con
verted to unsigned long int.

• Otherwise. if one of the operands is a long into then the other is converted to
long int.

• Otherwise. if one of the operands is an unsigned into then the other is con
verted to unsigned int.

In general. most implicit conversions are invisible. They occur without any
obvious effect. The following sections describe implicit conversions in more
detail.

3.6.2 Mixing Integers
There are four possible sizes of integers--char. short. into and long-and they
may be mixed freely in an expression. Due to the integral widening rules. the
compiler converts chars and shorts to ints before evaluating an expression.
This is why Figure 3-3 shows int at the bottom of the inverted pyramid-all
smaller integer types are converted to int or unsigned int before an expression is
evaluated. For example. in the following program. c and j are expanded to ints
before the arithmetic expression is evaluated. The constant 8 is already an int so
it does not need to be converted.

main()
{

char c = 5
short j = 6;
int k = 7;

k = c+j+8;
exit (0);

www.manaraa.com

Scalar Data Types 59

Box 3-7: ANSI Feature - Unsigned Conversions

Prior to the ANSI Standard, there wa no agreed-upon method for pro
moting un igned char and unsigned shorts. Should they be widened to
int or to unsigned int ? There wa al 0 confusion about converting
operand when one wa a long un igned integer and the other was a hort
igned integer. Should the hort un igned integer be widened to an

unsigned int, making the re ult unsigned or should it be converted to a
signed int, making the re ult a signed integer?

Most compilers converted unsigned chars and unsigned short to un
signed ints figuring that the unsigned quality wa too important to
convert away. Likewise, when signed and unsigned objects met in ex
pression, the result wa always unsigned. But this sign-preserving
strategy sometime produces strange results. For example, if a i an
unsigned short whose value i 2, then the expression

a - 3

evaluate to a very large un igned value rather than the igned value of
- 1.

To avoid thi problem the ANSI Committee adopted a different conver-
ion method, known a value-preserving. Thi method converts unsigned

char and unsigned short to int, a uming that the int type i larger
than un igned char and unsigned short, re pectively. If int i not larger,
the object i converted to un igned int. A uming 16-bit hort and
32-bit int in the previou example, a would be converted to int rather
than unsigned int, 0 the re ult of the expre ion would be-1.

ote that the difference between sign-preserving and value-preserving
rule only become manife t when an un igned type is shorter than an int.
If both operand are unsigned int , the re ult i un igned, so that the
expre ion

2u - 3u

always evaluates to a large unsigned value.

www.manaraa.com

60 Chapter 3

To convert a short 5 to an int, all that is required is to add 2 additional bytes of
zeroes. The short variable with value 5 would be stored in binary fonn:

00000000 00000101

After converting it to a four-byte int, its representation is

00000000 00000000 00000000 000000101

Clearly, this does not present any problems since the object retains its value of 5.
For negative values, the process is slightly more complicated since the compiler
must ensure that the converted value is also negative. It does this by filling the
additional bytes with ones rather than zeroes. This is known as sign extension.
For example, the short value -5 is represented in two's complement notation as

11111111 11111011

To convert it to a long int whose value is -5, the compiler adds two bytes filled
with ones:

11111111 11111111 11111111 11111011

Integral widening conversions are almost always innocuous. Problems arise,
however, when an implicit conversion shortens an object. This happens only in
assignment conversions. For example, suppose c is a char, and you make the
assignment

c = 882;

The binary representation of 882 is

00000011 01110010

It requires two bytes of storage, but the variable c has only one byte allocated for
it, so the two upper bits don't get assigned to c. This is known as overflow and
the result is not defmed by the ANSI Standard for signed types.

Usually, a compiler simply ignores the extra byte, so c would be assigned the
rightmost byte:

01110010

www.manaraa.com

Scalar Data Types 61

This would erroneously give c the value of 114. It is important, therefore, to
make sure that you do not exceed the size limits when you assign values to
variables. The principle illustrated for chars also applies to shorts, ints, and
long ints. For unsigned types, however, C has well-defined rules for dealing
with overflow conditions. When an integer value x is converted to a smaller
unsigned integer type, the result is the non-negative remainder of

where V_MAX is the largest number that can be represented in the shorter
unsigned type. For example, if j is an unsigned short, which is two bytes, then
the assignment

j = 71124;

assigns to j the remainder of

71124 / (65535+1)

The remainder is 5588. Note that for nonnegative numbers, and for negative
numbers represented in two's complement notation, this is the same result that
you would obtain by ignoring the extra bytes.

3.6.3 Mixing Signed and Unsigned Types
The only difference between signed and unsigned integer types is the way they
are interpreted. They occupy the same amount of storage. For example, a
signed char with bit pattern

11101010

has a decimal value of -22, assuming two's complement notation. An unsigned
char with the same binary representation has a decimal value of 234. A problem
arises when you mix a signed type with an unsigned type. For example, what is
the value of this expression?

lOu - 15

One might expect the result to be -5, but this is not the case. The ANSI
Standard states that if one of the operands of a binary. expression has type
unsigned int and the other operand has type int, the int object is converted to
unsigned int, and the result is unsigned. Using this rule, which is described in
more detail in Box 3-7, the value of the expression shown above would be
4,294,967,291 (assuming the machine has 4-byte ints and uses two's comple
ment notation). This value is derived from the same bit pattern used to represent
-5.

www.manaraa.com

62 Chapter 3

In most cases, the conversion from signed to unsigned does not cause any
problems and goes unnoticed. Where you need to be careful is when you use an
unsigned expression to control program flow. Although the subject of program
flow is discussed in the next chapter, the following example should be clear.

main()
{

unsigned jj;
int k;

if (jj-k < 0) /* This is almost certainly
* a bug. */

faa () ;
exit (0);

Translated into English, the program states: "if jj minus k is less than zero, call
the loo() function; otherwise, end the program." However, because of unsigned
conversion rules, the expression jj - k will never be less than zero. This is
obviously not what is intended by the programmer. Good compilers are able to
diagnose these bugs and issue a warning message.

3.6.4 Mixing Floating-Point Values
There are three types of floating-point values-float, double, and long double
(ANSI extension). There is no difficulty with mixing them in an expression.
After dividing the expression into subexpressions, the compiler widens the
smaller object of each binary pair to match the wider object. If, for example, a
binary expression contains a float and a double, the float would be converted to
double. This would not affect their value in any way and would go unnoticed.
It should be pointed out, however, that many computers perform arithmetic with
floats much faster than with doubles and long doubles. You should only use
these larger types if you need the greater range or precision.

As is the case with mixing integers, the problem with floating-point conversions
occurs when you assign a larger type to a smaller type. There are two potential
problems. One is the loss of precision, and the other is an overflow condition.
Suppose that on your computer a double can represent 10 decimal places and a
float can only represent 6 decimal places. If I is a float variable, and you make
the assignment

f = 1.0123456789

the computer rounds the double constant value before assigning it to f. The
value actually assigned to f, therefore, might be 1.012346 (if floats are only 32
bits long). This probably will not cause any problems unless your program
requires great accuracy. If you need more accuracy, you should use double or
long double variables, not floats.

www.manaraa.com

Scalar Data Types 63

A more serious problem occurs when the value being assigned is too large to be
represented in the variable. For example, the largest positive number repres~nt
able by a float might be 2e38 (the actual ranges vary from computer to
computer). What happens if you try to execute the following assignment?

f = 2e40;

The behavior is not defined by the ANSI Standard, but on some computers this
statement would produce a runtime error. A runtime error is an error that occurs
while the program is actually executing, as opposed to errors that occur when
you compile the program (called compile-time errors). Runtime errors are
particularly difficult to recover from, so you should go to great pains to avoid
them. If there is any chance that an assignment statement will cause a float
ing-point overflow, you should use a larger floating-point type.

3.6.5 Mixing Integers with Floating-Point Values

It is perfectly legal to mix integers and floating-point values in an expression, to
assign a floating-point value to an integer variable, or assign an integer value to a
floating-point variable. The simplest case is assignment of an integer to a
floating-point variable. In this case, the integer value is implicitly converted to a
floating-point type. If the floating-point type is capable of representing the
integer, there is no change in value. If/is a double, the assignment

f = 10;

is executed as if it had been written

f = 10.0;

This conversion is invisible. There are cases, however, where a floating-point
type is not capable of exactly representing all integer values. Even though the
range of floating-point values is generally greater than the range of integer
values, the precision may not be as good for large numbers. In these instances,
conversion of an integer to a floating-point value may result in a loss of preci
sion. For example, try running the following example on your computer.

www.manaraa.com

64

#include <stctio.h>

main ()
{

long int j
float x;

x = j;

2147483600;

printf ("j is %d\nx is %10f\n", j, x);
exit (0);

Chapter 3

The case of mixing integer and floating-point values in expressions is similar.
The compiler converts all integers into the largest floating-point type present. If
j is an iot andfis a float, the expression

f + j

would cause j to be quietly converted to a float. In the expression

f + j + 2.5

bothfandj would be converted to doubles because the constant 2.5 is a double.

The most risky mixture of integer and floating-point values is the case where a
floating-point value is assigned to an integer variable. First, the fractional part is
discarded. Then, if the resulting integer can fit in the integer variable, the
assignment is made. In the following statement, assuming j is an iot, the double
value 2.5 is converted to the iot value 2 before it is assigned.

j = 2.5;

This causes a loss of precision which could have a dramatic impact on your
program. The same truncation process occurs for negative values. After the
assignment

j = -5.8;

the value ofj is -5.

An equally serious situation occurs when the floating-point value cannot fit in an
integer. For example,

j = 999999999999.888888

This causes an overflow condition which may halt program execution. As a
general rule, it is a good idea to keep floating-point and integer values separate
unless you have a good reason for mixing them.

www.manaraa.com

Scalar Data Types 65

3.7 Explicit Conversions - Casts

The previous section describes quiet conversions that the C language perfonns
under certain circumstances. It is also possible to explicitly convert a value to a
different type. Explicit conversion is called casting and is perfonned with a
construct called a cast. To cast an expression, enter the target data type enclosed
in parentheses directly before the expression. For example,

j = (float) 2;

converts the integer 2 to a float before assigning it to j. Of course, if j is an
integer, the compiler would implicitly convert the value back to an integer before
making the assignment.

Casting is a useful operation in a number of diverse situations. Consider, for
example, the following situation:

int j = 2, k = 3;
float f;

f = k/j;

At ftrst glance, it might appear that the f gets assigned the value 1.5. However, a
closer look reveals that f is actually assigned the value 1.0. This is because the
expression

k/j

contains only ints, so there is no reason to "promote" either variable to a float
ing-point type. The result of an integer expression is always an integer, so the
true value 1.5 is truncated to the integer value 1. Then, because it is being
assigned to a floating-point variable, the value 1 is converted to 1.0. One way to
avoid this problem is to cast either, or both, of the integer variables to floats.
For instance,

f = (float) j/k;

This explicitly converts j to a float. Then the implicit conversion rules come
into play. Because j has been converted to a float, the system automatically
converts k to a float as well. The result of an expression containing two floats is
a float, so f gets assigned the true expression value, which is 1.5.

www.manaraa.com

66 Chapter 3

3.8 Enumeration Types
In addition to integer, floating-point, and pointer types, the scalar types also
include enumeration types. Other computer languages, such as Pascal, also have
enumeration types that enable you to declare variables and the set of named
constants that can be legally stored in the variable.

Enumeration types are particularly useful when you want to create a unique set
of values that may be associated with a variable. The compiler reports an error if
you attempt to assign a value that's not part of the declared set of legal values to
an enum variable.

In the following example, we declare two enumeration variables called color and
intensity. color can be assigned one of four constant values: red, blue, green, and
yellow. intensity can be assigned one of three constant values: bright, medium,
or dark.

enum
enum

red, blue, green, yellow } color;
bright, medium, dark } intensity;

As shown in our examples, the syntax for declaring enumeration types is to start
with the enum keyword followed by the list of constant names enclosed in
braces, followed by the names of the enum variables. There is another syntax
described in Section 8.4 that is slightly mor~ complex.

Because enumeration types were not part of the original K&R standard, their
implementation varies from one C compiler to another. Most C compilers issue
warning messages when an enum type conflict occurs, although the warning is
not required by the ANSI Standard. (In fact, the Standard prohibits compilers
from halting compilation due to enum type conflicts.) A good compiler, howev
er, would issue warnings for all of the type conflicts and misleading usages
shown below:

color = yellQw; /* OK */
color = bright; /* type conflict */
intensity = bright; /* OK */
intensity = blue; /* type conflict */
color 1; /* type conflict */
color = blue + green; /* misleading usage */

Constant names in an enum declaration receive a default integer value based on
their position in the enumeration list. In most cases, the integer value is not
important because you are treating the enumeration as a unique value. Neverthe
less, it's helpful to know how the compiler is storing the values.

The default values start at zero and go up by one with each new name. In the
declaration of color, for instance, red, blue, green, and yellow represent the
integer values 0, I, 2, and 3, respectively.

www.manaraa.com

Scalar Data Types 67

You can override these default values by specifying other values. If you do
specify a value, all subsequent default values begin at one more than the last
defined value. For example,

enum { APPLES, ORANGES = 10, LEMONS, GRAPES = -5,
MELONS }i

is the same as

enum { APPLES = 0, ORANGES = 10, LEMONS = 11,
GRAPES = -5, MELONS = -4 }i

Note that the assigned values need not be in ascending order, though for read
ability it is a good idea to write them that way.

The compiler need only allocate as much memory as is necessary for an enum
value. In our color example, for instance, a good compiler will realize that the
potential values of color are small enough that only ·one byte is needed for the
variable. This can make a difference when enum variables are embedded in
aggregate types, as described in Chapter 8.

3.9 The void Data Type
The void data type was not an original element of the K&R standard, but in
recent years it has become an accepted part of the C language. Prior to the
ANSI Standard, however, its semantics were somewhat vague. This section
describes the ANSI version of void.

The void data type has two important purposes. The first is to indicate that a
function does not return a value. For instance, you may see a function definition
such as

void func(a, b)
int a, bi

This indicates that the function does not return any useful value. Likewise, on
the calling side, you would declare June() as

extern void func()i

This informs the compiler that any attempt to use the returned value fromJuneO
is a mistake and should be flagged as an error. For example, you could invoke
June() as follows:

www.manaraa.com

68 Chapter 3

func(x, y);

But you cannot assign the returned value to a variable:

num = func(x, y); /* This should produce an

* error
*/

The other purpose of void is to declare a generic pointer. We defer a discussion
of this subject to Chapter 7.

3.10 Typedefs
The C language allows you to create your own names for data types with the
typedef keyword. Syntactically, a typedef is exactly like a variable declaration
except that the declaration is preceded by the typedef keyword. Semantically,
the variable name becomes a synonym for the data type rather than a variable
that has memory allocated for it. For example, the statement

typedef long int FOUR_BYTE_INT;

makes the name FOUR_BYTE JNT synonymous with long int. The following
two declarations are now identical:

long int j;
FOUR BYTE INT j;

By convention, typedef names are capitalized so that they are not confused with
variable names.

There are a number of uses for typedefs. They are especially useful for abstract
ing global types that can be used throughout a program. This application of
typedefs is described in Chapter 8.

www.manaraa.com

Scalar Data Types

Box 3-8: Bug Alert - Confusing typedef with
#define

69

At fir t glance, it may eem that the typedef keyword duplicate func
tionality provided by the #detine directive. After all , we could write

#define USHORT unsigned int

which would erve the arne effect as

typedef unsigned i nt USHORT ;

In thi ca e, the two ver ion are indeed imilar (though there are some
ubtle differences) but for more complex type declaration , #detine i

inadequate. Suppose, for example, that you want to define a name that
represents pointer to into Using #detine you would write

#define PT TO INT int *
Then to declare two pointer to ints, you would write

PT_TO_INT pI , p2 ;

which expands to

int *p l , p2 ;

Becau e the asteri k appear ju t once, only pJ is declared as a pointer to
an int; p2 is an int.

If you u e a typedef, thi problem doe not arise. After declaring

typedef int *PT TO INT ;

the declaration

PT TO INT pI , p2 ;

define both pJ and p2 as pointers to int .

Another use of typedefs is to compensate for differences in C compilers. For
example, some non-ANSI C compilers do not support the unsigned short type.
Using typedefs, you can write the program so that it uses unsigned short if it's
available, or unsigned int when the compiler does not support unsigned short.
For ANSI-conforming compilers, you would write

typedef unsigned short USHORT;

www.manaraa.com

70 Chapter 3

For compilers that do not support unsigned short, you would write

typedef unsigned int USHORT;

Then you would use the typedef name USHORT whenever you want to declare
an unsigned short variable. To compile the program on a different machine, all
you need to do is find out whether it supports unsigned short, and write the
typedef accordingly.

Note that the typedef definition must appear before it is used in a declaration.

3.11 Finding the Address of an Object

As we described earlier, every variable has a unique address that identifies its
storage location in memory. For some applications, it is useful to access the
variable through its address rather than through its name. To obtain the address
of a variable, you use the ampersand (&) operator. Suppose, for instance, thatj is
a long int whose address is 2486. The statement

ptr = &j;

stores the address value 2486 in the variable ptr. When reading an expression,
the ampersand operator is translated as "address of," so you would read this
statement as: "Assign the address of j to ptr." The following program prints the
value of the variable called j and the address of j:

#include <stdio.h>

main ()
{

int j=l;

printf.("The value of j is: %d\n", j);
printf("The address of j is: %p\n", &j);
exit (0);

www.manaraa.com

Scalar Data Types 71

The result is

The value of j is: 1
The address of j is: 3634264

The address represents the actual location of j in memory. The particular address
listed above is arbitrary. It happens to be j's address on our computer for a
particular execution. On another computer, the value could be different. Note
thatprintf() requires a special format specifier (%p) to print address values. The
%p specifier is a relatively new ANSI addition to the C language that may not
be supported on older compilers. Many compilers allow you to print an address
with the %d, %0, and %x specifiers, but this is not portable since addresses are
not guaranteed to be represented in the same fashion as integers.

Note that you cannot use the ampersand operator on the left-hand side of an
assignment expression. For instance, the following is illegal since you cannot
change the address of an object:

&x = 1000; /* ILLEGAL */

3.12 Introduction to Pointers
In the previous example,

ptr = &j;

the variable ptr that holds the address of j in our first example cannot be a
normal integer variable. To store addresses, you need a special type of variable
called a pointer variable (by storing an address, it points to an object). To declare
a pointer variable, you precede the variable name with an asterisk. The follow
ing declaration, for example, makes ptr a variable that can hold addresses of long
int variables.

long *ptr;

The data type, long in this case, refers to the type of variable that ptr can point
to. For instance, the following is legal:

long *ptr;
long long_var;
ptr = &long_var;

But this is illegal:

long *ptr;
float float_var;

/*

*
*/

Assign the address of
long_var to ptr.

ptr = &float var; /* ILLEGAL - because ptr can only
* store the address of a long into
* /

www.manaraa.com

72 Chapter 3

The following program illustrates the difference between a pointer variable and
an integer variable:

#include <stdio.h>

main ()
{

int j=l;
int *pj;

pj = &j;
printf(

/* Assign
"The value

the address of j
of j is: %d\n", j

printf("The address of j is: %p\n",
exit (0) ;

The result is

The value of j is: 1
The address of j is: 3634264

3.12.1 Dereferencing a Pointer

to pj * /
) ;

pj) ;

The asterisk, in addition to being used in pointer declarations, is also used to
dereference a pointer (i.e., get the value stored at the pointer address). If you
have not come across the concept before, the notion of dereferencing can be
difficult to grasp at first. The following program and Figure 3-2 show how
dereferencing works.

#include <stdio.h>

main ()
{

.)

char *p_ch;
char chI = 'A', ch2;

printf("The address of p_ch is %p\n", &P ch);

p_ch = &chl;
printf("The value stored at p_ch is %p\n", p_ch);
printf("The dereferenced value of p_ch is %c\n",

*p_ch);
ch2 = *p ch;

exit(0);

www.manaraa.com

Scalar Data Types

The output from running this program is

The address of p_ch is 1004
The value stored at p_ch is 2001
The dereferenced value of p_ch is A

73

This is a roundabout and somewhat contrived example that assigns the character
'A' to both chi and ch2. It does, however, illustrate the effect of the dereference
(*) operator. Figure 3-2 shows the memory contents at each stage of the pro
gram execution. On our machine, the declarations allocate four bytes for p _ch
(pointer variables must be large enough to hold the highest possible address in
the machine so they are often the same size as long ints), and one byte each for
chi and ch2. chi is initialized to 'A'. The fIrst printj() call displays the address
of the pointer variable p _ ch. In the next step, p _ ch is assigned the address of
chi, which is also displayed. Finally, we display the dereferenced value of p Jh
and assign it to ch2.

These last steps are the important ones. The expression *p Jh is interpreted as:
"take the address value stored in p Jh and get the value stored at that address."
This gives us a new way to look at the declaration. The data type in the pointer
declaration indicates what type of value results when the pointer is dereferenced.
For instance, the declaration

float *fp;

means that when * fp appears as an expression, the result will be a float value.

The expression *fp can also appear on the left side of an expression:

*fp = 3.15;

In this case, we are storing a value (3.15) at the location designated by the
pointerfp. Note that this is different from

fp = 3.15;

which attempts to store the address 3.15 infp. This, by the way, is illegal since
addresses are not the same as integers or floating-point values.

www.manaraa.com

74 Chapter 3

Memory

Code Variable Address Contents

.. 4 bytes ...

1000 E3 p_ch 1004

char *p_ch;

char ch1 = 'A', ch2; -+1 byte'"

2000

E9 ch1 2001
ch2 2002

p_ch = &ch1; 1000 ~ p_ch 1004

2000

E9 ch1 2001

ch2 2002

1000 ~ p_ch 1004

ch2 = *p_ch;

2000

ch1 2001 §]
ch2 2002 'A'

Figure 3-3. Dereferencing a Pointer Variable.

www.manaraa.com

Scalar Data Types 75

3.12.2 Initializing Pointers
You can initialize a pointer just as you would any other type of variable.
However, the initialization value must be an address. For example, you could
write

int j;
int *ptr_to j = &j;

However, you cannot reference a variable before it is declared, so the following
declarations would be illegal:

int *ptr_to_j = &j;
int j;

3.12.3 Using Pointers
Pointer variables are used frequently with aggregate types, such as arrays and
structures. We have described them in this chapter because they are an important
scalar data type with which you should become familiar. In later chapters, we
describe the{ull flexibility and power of C pointers.

www.manaraa.com

76 Chapter 3

Exercises

1. When printing a float or double with the %fforrnat specifier, how many deci
mal digits does printf() output? Does printf() round or truncate the value?

2. After reading the description of printf() in Appendix A, write a function that
accepts a double argument and prints it out, but only prints three decimal dig
its.

3. Write a program with the following declarations in it that prints out the address
of each variable.

char c;
int j;
float X;

What do the addresses tell you about the way your compiler allocates memory
for variables?

4. Write the octal, decimal, and hexadecimal equivalents of the following binary
numbers:

a) 00010010
b) 01100101
c) 01101011
d) 10111011 (assume two's complement notation)
e) 00111111
f) 00000100 01100100

5. Write declarations for the following:

a) An unsigned long integer.
b) A double-precision floating -point variable.
c) A pointer to a char.
d) A char initialized to 'x'.
e) An external function returning an unsigned int.

www.manaraa.com

Scalar Data Types 77

6. Give the binary two's complement representation of the following:

a) 1
b) -1
c) 255
d) 256
e) 511
f) 512
g) 513
h) 127
i) 128
j) -128
k) OxFF
l) Ox7F

7. Give the binary one's complement representation of the numbers listed in Ex
ercise 6.

www.manaraa.com

Chapter 4

Control Flow

"Begin at the beginning," the King said, very
gravely, "and go on till you come to the
end: then stop." -Lewis Carroll, Alice in Wonderland

The programs listed in the previous chapter were architecturally simple because
they were straight line programs. That is, statements were executed in the order
in which they appeared without any branching or repetition. Most programming
problems are not so simple. In fact, the great power of programming languages
stems from their ability to instruct the computer to perform the same task repeat
edly, or to perform a different task if parameters change. In high-level
programming languages, this is accomplished with control flow statements that
allow you to alter the sequential flow. Control flow statements fall into two
general categories: conditional branching and looping. Conditional branching is
the ability to decide whether or not to execute code based on the value of an
expression. Looping, also called iteration, is the ability to perform the same set
of operations repeatedly until a special condition is met.

www.manaraa.com

Control Flow 79

4.1 Conditional Branching
Conditional branching is the most basic control feature of any programming
language. It enables a program to make decisions, to decide whether or not to
execute a sequence of statements based on the value of an expression. Since the
value of the expression may change from one execution to another, this feature
allows a program to react dynamically to different data. In C, conditional
execution is performed with the if and else keywords. The syntax is shown in
Figure 4-1.

expression statement

statement

Figure 4-1. Syntax of an if. .. else Statement.

The form of an if statement is fairly simple. The if keyword is followed by an
expression enclosed in parentheses. If the expression is "true" (nonzero), the
next statement is executed. Otherwise, execution skips over the next statement:

if (x)

statementl; / * Executed only if x is nonzero * /
statement2; / * Always e xecuted. * /

If the else clause is present, the statement following the else keyword is executed
whenever the if expression is "false" (zero):

if (x)
statementl; / * Exe c uted only if x is n onzero * /

else
statement 2 ; / * Exe cuted only if x is zero * /

s tatement 3 ; / * Always e xecut ed * /

This syntax mirrors the syntax we use in everyday language. For example, the
sentence, "If the light is red, stop; otherwise, go" would be written in C as

if (light == red)
stop;

else
go;

www.manaraa.com

80 Chapter 4

Note that there is no then after the if as in other programming languages such as
Pascal and FORTRAN.

A common use of the if statement is to test the validity of data. Suppose, for
example, that you want a program that accepts an integer value from the user and
prints the square root of the number. Before calling the sqrt() function, which is
part of the runtime library, you should make sure that the input value is non-neg
ative:

#include <stdio.h>
#include <math.h> /* Include file for sqrt() */

main ()
{

/*

*

double num;

printf("Enter a non-negative number: ");

The %If conversion specifier indicates a
data object of type double.

*/
scanf(''%If", &num);
if (num < 0)

printf("Input Error: Number is negative.\n");
else

printf ("The square root is: %f\n", sqrt (num)) ;
exit (0);

Note that the else is necessary. If we write the program without the else, as
shown on the next page, the program will print an error message when the input
value is less than zero, but then go ahead and mistakenly try to print the square
root.

www.manaraa.com

Control Flow

#include <stdio.h>
#include <math.h>

main()
{

double num;

printf("Enter a non-negative number: ");
scanf(''%If'', &num);
if (num < 0)

printf("Input Error: Number is negative.\n");
/* Next statement is always executed. */

printf("The square root is: %f\n", sqrt(num));

exit (0);

81

The indentations after if and else are included for readability, not for functional
ity. The program could be written

#include <stdio.h>
#include <math.h>
main() {double num;
printf("Enter a non-negative number:"
) ; scanf (''%If'', &num);
if (num <
0) printf("Input Error: Number is negative.\n");
else printf("The square root is: %f\n",
sqrt(num)); exit(O);
}

Although this program will run correctly, it reflects poor programming style
since it is difficult to read. The nonnal convention is to put the statement
following an if or else on its own indented line. In this book, we always indent
two spaces at a time, although some people prefer to indent 3, 4, or even 8 spaces
at a time.

www.manaraa.com

82 Chapter 4

4.1.1 Comparison Expressions

Typically, the conditional expression in an if statement is a comparison between
two values. Altogether, there are six comparison operators (sometimes called
relational operators), as shown in Table 4-1.

<

>

<=

>=

1=

less than

greater than

less than or equal to

greater than or equal to

equal to

not equal to

Table 4-1. Relational Operators.

Note especially that the "equal to" comparison operator consists of two equal
signs. One of the most common mistakes made by beginners and experts alike is
to confuse the equal to (==) operator with the assignment operator (=). (See Box
4-1 for a discussion of when this confusion is particularly dangerous.)

Relational expressions are often called Boolean expressions, in recognition of the
nineteenth century mathematician and logician George Boole. Boole reduced
logic to a propositional calculus involving only true and fall?e values.

Many programming languages, such as Pascal, have Boolean data types for
representing TRUE and FALSE. The C language, however, represents these
values with integers. Zero is equivalent to FALSE, and any nonzero value is
considered TRUE.

Like the arithmetic operators described in Chapter 3, the relational operators are
binary operators. The value of a relational expression is an integer, either 1
(indicating the expression is true) or 0 (indicating the expression is false). The
examples in Table 4-2 illustrate how relational expressions are evaluated.

www.manaraa.com

Control Flow 83

Expression Value
-1 < 0 1
0>1 0

0== 0 1
1 !=-1 1
1 >=-1 1
1 >10 0

Table 4-2. Relational Expressions.

Because Boolean values are represented as integers, it is perfectly legal to write

if (j)

statement;

Box 4-1: Bug Alert - Confusing = with ==

One of the mo t common mistake made by beginners and expert alike is
to use the a ignment operator (=) in read of the equality operator (==).
For instance,

if (j = 5)

do_something ();

What i intended, clearly. is that the do _somefhing() function should only
be invoked if j equals five. It hould been written

if (j == 5)

do_something () ;

ote that the first version is yntactically legal since aJl expressions have
a value. The value of the expre ion j = 5 is 5. Since this is a nonzero
value the if expression will always evaluate to true and do _something()
will alway be invoked. There are a few C compiler on the market that
are able to recognize thi bug and issue a warning me age.

www.manaraa.com

84 Chapter 4

If j is any nonzero value, statement is executed; if j equals zero, statement is
skipped. This aspect of the language creates some interesting possibilities.
Suppose, for instance, that you want to write a program that reads a character
and prints it out if it is a letter of the alphabet, but ignores it if it is not an
alphabetic character. Recalling that the runtime library function isalpha() re
turns a nonzero value if its argument is a letter, you could write a program that
checks whether the input is an alphabetic character, as shown below.

#include <stdio.h>
#include <ctype.h> /* included for isalpha() */

main ()
{

char ch;

printf("Enter a character: ");
scanf("%c", &ch);
if (isalpha(ch))

printf("%c", ch);
else
printf("%c is not an alphabetic character.\n",

ch);
exit (0);

Note that the statement

if (isalpha(ch))

is exactly the same as

if (isalpha(ch) != 0)

The practice of using a function call as a conditional expression is a common
idiom in C. It is especially effective for functions ptat return zero if an error
occurs, since you can use a construct such as

if (func ())
proceed;

else
error handler;

www.manaraa.com

Control Flow 85

4.1.2 Compound Statements

Any statement can be replaced by a block of statements, sometimes called a
compound statement. A compound statement must begin with a left brace { and
end with a right brace }. A function body, therefore, is really just a compound
statement. Compound statements are particularly useful when used with flow
control statements because they allow you to execute a group of statements
rather than a single statement. To conditionally execute more than one state
ment, therefore, surround the group of statements with left and right braces, as
shown in the following example:

#include <stdio.h>

main ()
{

double num;

printf("Enter a non-negative number: ");
scanf(''%If'', &num);
if (num < 0)

printf("That's not a non-negative number!\n");
else

printf("%f squared is: %f\n", num, num*num);
printf("%f cubed is: %f\n", num, num*num*num);

exit (0);

www.manaraa.com

86

if (num < 0)
print error

else
{

}

print square
print cube

if (num < 0)
print error

else
print square
print cube

Print cube
of num

Chapter 4

Correct Version

no Print square
of num

Print cube
of num

Incorrect Version

no Print square
of num

Figure 4-2. Braces Ensure Correct Control Flow.

www.manaraa.com

Control Flow 87

Box 4-2: Bug Alert - Missing Braces

If we remove the brace after the else phra e in the example in Section
4.1.2. the program takes on a different meaning. although it is sti ll a yn
tactically legal program.

#include <stdio . h>

main()
(

double num ;

printf(" Enter a non-negative number: ");
scanf ('' %If'' , &num);
if (num < 0)

printf(" That ' s not a non-negative number\n");

else
printf("%f squared is : %d\n" , num , num*num) ;

printf(" %f cubed is : %d\n" , num, num*num num) ;
exit (0);

The indentation is misleading here because it implie that both the quare
and the cube of /1um will be printed if, and only if, /1um i not Ie. than
zero. Actually, though, only the fir t statement after the else is part of the
flow-control logic. The other prilltf() tatement is alway executed, re
gardle of nllm' value. Figure 4-2 hows the logic of the two ver ions.

This example illu trate the important point that the compiler is oblivious
to formatting. The compiler recognize yntax, uch as pelling and
punctuation, but it completely ignore indentations, comment , and other
formatting aid. The formatting is entirely for human.

www.manaraa.com

88 Chapter 4

4.1.3 Nested if Statements

A single if statement enables the program to choose one of two paths. Frequent
ly, however, you need to specify subsequent branching. After making decision 1,
you need to make decision 2, then decision 3, etc. This type of program flow
requires a construct called a nested if statement. Suppose, for example, that you
want to write a function that accepts three integers, and returns the one that has
the smallest value. Using nested if statements, you could write the function
shown in Figure 4-3.

The else phrases, except for the last one, are all necessary to provide correct
conditional execution. It is a worthwhile exercise to draw a program flow
diagram with the else phrases omitted. Note that when an else is immediately
followed by an if, they are usually placed on the same line. This is commonly
called an else if statement, although it is really an if statement nested within an
else phrase.

int min(a, b, c)
int a, b, c;
{

if(a < b)
if (a < c)

return a;
else

return c;
else if (b < c)

return b;
else

return c;

Figure 4-3. Logic of a Nested if Statement.

www.manaraa.com

Control Flow 89

Box 4-3: Bug Alert - The Dangling else

e ted if statements create the problem of matching each else phra e to
the right if tatement. Thi is often called the dangling el e problem. In
the min() function. for example, note that the first else i a ociated with
the econd if. The general rule i

An else is always associated with the nearest prel'ious if.

Each if tatement, however, can have only one else phra e. The next else
phra e in mif/O, therefore, correspond to the ftrst if becau e the econd if
has already been matched up. The final el e phrase correspond to the
third if tatement (which is written as an else if).

It is important to format nested ifs correctly to avoid confusion. An else
phrase hould alway be at the arne indentation level as its a ociated if.

4.2 The switch Statement

When there are many paths in a program, if-else branching can become so
convoluted that it is difficult to follow. These situations are usually prime
candidates for use of the switch statement. The switch statement allows you to
specify an unlimited number of execution paths based on the value of a single
expression. For example, the following function has five branches based on the
value of input _ arg.

int switch example (input arg
char input arg;
{

switch (input_arg)

case ' A' : return 1;
case 'B' : return 2;
case 'e' : return 3;
case '0' : return 4;
default : return -1;

www.manaraa.com

90 Chapter 4

The function returns 1, 2, 3, or 4 depending on whether input_arg is 'A', 'B',
'C', or 'D', respectively. If input _arg is anything else, the function returns -1.
The same function can be written using ifs and elses:

int switch_example (input_arg)
char input_arg;
{

if (input_arg == 'A')
return 1;

else if (input_arg 'B')
return 2;

else if (input_arg 'e')
return 3;

else if (input_arg 'D')
return 4;

else
return -1;

Note that we line up all the else if statements at the same indentation level to
emphasize that it is a multibranching construct. Even with this formatting,
though, the version using switch is considerably more readable. In addition,
switch statements often result in more efficient machine code.

4.2.1 Syntax of a switch Statement

The formal syntax of a switch statement is shown in Figure 4-4. The expression
immediately after the switch keyword must be enclosed in parentheses and must
be an integral expression. That is, it can be char, short, int, or long, but not
float, double, or long double. (Note: the K&R standard requires the expression
to be of type int.) The expressions following the case keywords must be integral
constant expressions, meaning they may not contain variables.

The semantics of the switch statement are straightforward. The switch expres
sion is evaluated, and if it matches one of the case labels, program flow
continues with the statement that follows the matching case label. If none of the
case labels match the switch expression, program flow continues at the default
label, if it exists. (Strictly speaking, the default label need not be the last label,
though it is good style to put it last.) No two case labels may have the same
value.

www.manaraa.com

Control Flow 91

An important feature of the switch statement is that program flow continues
from the selected case label until another control flow statement is encountered
or the end of the switch statement is reached. That is, the compiler executes any
statements following the selected case label until a break, goto, or return
statement appears. The break statement explicitly exits the switch construct,
passing control to the statement following the switch statement. Since this is
usually what you want, you should almost always include a break statement at
the end of the statement list following each case label.

}

expression

constant
expression

statement

statement

Figure 4-4. Syntax of a switch Statement.

The print _ error() function shown on the following page, for example, prints an
error message based on an error code passed to it.

www.manaraa.com

92 Chapter 4

/*

*
*

Prints error message based on error_code.
Function is declared with void because it
doesn't return anything.

*/

#include <stdio.h>
#define ERR INPUT VAL 1
#define ERR OPERAND 2
#define ERR OPERATOR 3
#define ERR TYPE 4

void print_error(error code
int error code;

switch (error_code)

case ERR INPUT VAL:
printf("Error:
break;

case ERR OPERAND:
printf("Error:
break;

case ERR OPERATOR:
printf("Error:
break;

case ERR TYPE:

Illegal input value.\n");

Illegal operand. \n") ;

Unknown operator.\n");

printf("Error: Incompatible data.\n");
break;

default: printf("Error: Unknown error code %d\n",
error_code);

break;

The break statements are necessary to prevent the function from printing more
than one error message. The last break after the default case isn't really neces
sary, but it is a good idea to include it anyway for consistency's sake. If, at some
later date, you change default to a specific case and add other cases below it,
you needn't worry about forgetting to include the break.

www.manaraa.com

Control Flow 93

We could write a superior version of the print _error() function by using enumer
ation constants instead of #defined constants. The declaration of error code
would be

typedef enum {
ERR_INPUT_VAL,
ERR_OPERAND,
ERR_OPERATOR,
ERR TYPE
ERROR_SET;

ERROR SET error code;

The typedef declaration makes ERROR_SET a synonym for the declaration of
enumeration constants. If we want to add new error codes, we need merely
invent a new name and add it to the list. The enum declaration ensures that each
name will be given a unique value. Moreover, a quality compiler will perform
type consistency checking to ensure that you use error_code in a meaningful
way. Note also that the name ERROR_SET is much more descriptive than int.
Typically, the typedef declaration would be placed in a header file where it can
be accessed by other source files.

Sometimes you want to associate a group of statements with more than one case
value. To obtain this behavior, you can enter consecutive case labels. The
following function, for instance, returns 1 if the argument is a punctuation
character, or zero if it is anything else.

/* This function returns 1 if the argument is a

*
*
*/

punctuation character.
zero.

is _punc(arg
char arg;
{

switch (arg)

case , , .
case , , . ,
case ' . , .
case ' . , . ,
case ' ! I : return 1;
default : return 0;

Otherwise, it returns

www.manaraa.com

94 Chapter 4

As a more practical example of the switch statement, consider the following
function which accepts three arguments-two operands and an operator-and
returns the value of the binary expression. Later, we'11 use this function as part
of a calculator program that performs simple arithmetic on expressions entered
from the terminal.

/*

*
This function evaluates an expression, given
the two operands and the operator.

*/
#include "err.h" /* contains the typedef

* declaration of ERR CODE.
*/

double evaluate(opl, operator, op2
double opl, op2;
char operator;

extern void print_error();

switch (operator)
{

case ' +' : return
case ' -' : return
case ' *' : return
case ' /' : return

opl +
opl -

opl *
opl /

op2;
op2;
op2;
op2;

default : /* Illegal operator */
print_ error(ERR OPERATOR
exit (1) ;

) ;

Note that we use the print_errorO function listed previously if the second argu
ment is not one of the four operators. The exit() function, described in Appendix
A, is a library function that exits the current program and returns control to the
operating system. You should always have a normal exitO (argument equal to
zero) in your main() function. In addition, exit() is useful in situations such as
this one where it is difficult to recover from an error. In this case, we return a
non-zero value to indicate an abnormal exit. How the operating system reacts to
different values returned from exit() varies from one implementation to another.

www.manaraa.com

Control Flow 95

4.3 Looping
Looping, or iteration, directs the computer to perform the same set of operations
over and over until a specified condition is met. The C language contains three
statements for looping:

• The while statement

• The do .•. while statement

• The for statement

The following sections describe each in detail.

4.3.1 The while Statement

The syntax of a while statement is shown in Figure 4-5. The semantics are as
follows. First, the expression is evaluated. If it is a nonzero value (i.e., true),
statement is executed. After statement is executed, program control returns to
the top of the while statement, and the process is repeated. This continues
indefinitely until the expression evaluates to zero (false), at which time program
flow jumps to the point immediately following statement. The statement, which
is often a compound statement, is called the body.

expression

statement

Figure 4-5. Syntax of a while Statement.

Figure 4-6 shows the flow of control for a simple while statement. So long as x
is less than y, the program continues to execute the while loop. With each pass
through the loop, however, x is incremented by one. When it is no longer less
than y, control flows to the next statement.

www.manaraa.com

96

while (x < y)

x = x+l; true

false

Figure 4-6. Flow Control of a while Statement.

Chapter 4

Because the incrementing operation occurs so frequently, the C language has a
special increment operator called ++. The while statement shown above, for
example, would normally be written

while (x < y)
x++;

The ++ operator is described in more detail in the next chapter.

As an example of using the while statement, suppose you want to read characters
from the terminal. The scanf() statement is one way to read data, but it requires
that you know what type of data is being entered so you can use the correct
format specifier. To read data when you don't know the data type, you can use
the getchar() function, which reads a single character from your terminal and
returns it as an int. Repeated calls to getchar() enable you to read a string of
characters, one at a time. When getchar() reaches the end of the input, it returns
a special value called EOF. EOF is a constant name defined in the header file
<stdio.h>. Its value is -1 for many implementations, but you should always use
the macro name itself rather than the constant in case an implementation uses a
different value.

The following program combines getchar() and the while statement to read a
string of characters from the terminal and count the number of spaces. The loop
terminates when the getchar() function reads a newline, represented by the \n
escape sequence.

www.manaraa.com

Control FI()w

#include <stdio.h>

main ()
{

printf("Enter a sentence:\n");

ch = getchar();
while (ch != '\n')
{

if (ch == , ')

num_of_spaces++;
ch = getchar();

printf("The number of spaces is %d.\n",
num_of_spaces);

exit (0);

97

Note that we make an assignment to ch before entering the while loop. This is to
ensure that its initial value, which would otherwise be random, is not accidental
ly a space or newline character. Note also that the statement part of the while
loop is actually a compound statement. A typical execution of the program
would be

Enter a sentence:
How many spaces does this sentence have?
The number of spaces is 6.

Note, however, that the program does not analyze your input until you press the
newline or RETURN key. This is because computers employ a temporary
storage area called a buffer for keyboard input. This allows you to edit your
input before it is processed. Once you enter a newline character, the computer
sends the entire buffer to the executing program. The getchar() function then
reads the buffer one character at a time. Chapter 11 describes buffers and I/O in
more detail.

4.3.2 The do ... while Statement
One important characteristic of the while statement is that the test condition is at
the top of the loop. This means that if the condition is false (or zero) the first
time, the while body will never be executed. But there are certain situations
where you need to execute the body at least once. These situations are not
common, but when they do occur, you should use the do ••• while statement,

www.manaraa.com

98 Chapter 4

which has the fonn shown in Figure 4-7. The only difference between a
do ... while and a regular while loop is that the test condition is at the bottom of
the loop. This means that the program always executes statement at least once
(the first time through). Then, depending on the value of expression, it may loop
back to do, or it may continue with the next statement.

statement

expression

Figure 4-7. Syntax of a do ... while Statement.

Using do ••. while instead of while, the previous program would be written

#include <stdio.h>

main ()
{

printf("Enter a sentence:\n");
do
{

ch = getchar();
if (ch == , ')

num_of_spaces++;
while (ch != , \n');

printf ("The number of spaces is %d. \n",
num_of_spaces);

exit (0);

Note that in this version it is not necessary to include the initial assignment of ch
because the do ... while statement guarantees that at least the first character will
be fetched.

www.manaraa.com

Control Flow 99

4.3.3 The for Statement

The last, but certainly not the least, of the iterative statements is the for state
ment. The for statement is designed as a shorthand for a particularly common
looping situation-when you need to initialize one or more variables before
entering the loop, and you need to change the value of one or more variables
each time through the loop. The syntax of a for statement is shown in Figure
4-8.

The for statement operates as follows:

1. First, expression] is evaluated. This is usually an assignment expression
that initializes one or more variables.

2. Then expression2 is evaluated. This is the conditional part of the state
ment.

3. If expression2 is false, program control exits the for statement and flows to
the next statement in the program. If expression2 is true, statement is ex
ecuted.

4. After statement is executed, expression3 is evaluated. Then the statement
loops back to test expression2 again.

Note that expression] is evaluated only once, whereas expression2 and expres
sion3 are evaluated on each iteration.

expression1

expression2 expression3

statement

Figure 4-8. Syntax of a for Statement.

www.manaraa.com

100 Chapter 4

The easiest way to understand the for statement is to compare it to a while
statement, as shown below. The statement

for (exprl; expr2; expr3)
statement;

is the same as

exprl;
while (expr2

}

statement;
expr3;

Though difficult to grasp at first, the for statement is probably the most frequent
ly used of all the iterative statements. An example should make its operation
clearer. The following function returns the factorial of its argument:

long int factorial (val)
int val;

int j, fact = 1;

for (j=2; j <= val; j++)
fact = fact*j;

return fact;

If you're having trouble understanding how this function works, try rewriting it
using a while statement in place of the for statement. As another example,
consider the following function, which converts a string of digits typed from the
keyboard into an integer.

www.manaraa.com

Control Flow 101

/* This function reads a string of digits from
* the terminal and produces the string's integer
* value.
*/

#include <stdio.h>
#include <ctype.h>

int make _ int ()

int num=O, digit;

digit
for (
{

getchar () ;
isdigit(digit); digit

num num * 10;
num num + (digit - '0');

return num;

The expression

digit - '0'

get char ())

converts the character from its code to its real numeric value. Note that it only
works if the codes for zero through ten are continuous and ascending. Fortunate
ly, this is the case with all the common codes, including ASCII and EBCDIC. In
ASCII, for instance, the decimal code for '5' is 53 and the code for '0' is 48. So,
if digit is '5', the expression

digit - '0'

evaluates to

53 - 48

which is 5.

www.manaraa.com

102 Chapter 4

Another way to write this function, using while instead of for, would be

#include <stdio.h>
#include <ctype.h>

int num=O, digit;

digit = getchar();
while (isdigit(digit »

num num * 10;
num num + digit - '0';
digit = getchar();

return num;

From a software engineering standpoint, the for version has the advantage that
the operation performed after each loop--getting the next character-is right in
the looping statement itself, clearly visible. For a short program such as this one,
it probably doesn't make much difference. But for large programs, where the
loop may contain a page or more of source code, the for statement makes it easy
to find out which variable is changing with each iteration.

In both versions, we call getcharO twice, which is unfortunate. If we want to
change the getchar() call to a different function call, we need to change both
occurrences. Yet another way to write this function, which is superior to both of
the previous versions, takes advantage of the fact that an assignment expression
yields a value. In this version, shown on the following page, we call getchar()
only once.

www.manaraa.com

Control Flow

#include <stdio.h>
#include <ctype.h>

int make _ int ()

int num=O, digit;

while (isdigit(digit
{

num num * 10;

getchar()))

num num + (digit - '0');

return num;

103

The assignment to digit and the test of digit are combined in a single expression.
This is probably the simplest version, and the way most experienced C program
mers would write the loop. Later in this chapter, we'll return to this function and
revise it so that we can use it in a calculator program.

4.3.4 Omitting Expressions

Note from the syntax diagram (Figure 4-8) that it is legal to omit any or all of the
three expressions in a for statement. However, you must include the two semi
colons. In practice, it is common to omit expression1 or expressionJ, but
expression2 is almost always included since it is the test condition. Also, there is
usually no reason to omit both expression1 and expressionJ since that would
result in the same functionality as a while statement. The following function,
which prints a specified number of newlines, does not use expression1 since
there is no need to make assignments before the loop is entered. The only
variable, newline _ num, gets its value from the calling function.

#include <stdio.h>

void pr_newline(newline num
int newline num;

for (; newline_num > 0; newline_num--)
printf("\n");

www.manaraa.com

104 Chapter 4

Note that "-" is analogous to "++". The expression,

newline num--

is equivalent to:

newline num newline num - 1

Box 4-4 : Bug Alert - Off-by-O ne Errors

A common programming error i to iterate through a loop the wrong
number of times. UsuaJly when you're off, you re off by one becau e
you have used the wrong relational operator (e.g. < in tead of <=).
Off-by-one errors are especially perniciou becau e they u ually do not
produce a compile-time or runtime error. In tead, the program run
smoothly but produce erroneou re ult. For example, the following
function attempt to compute the factorial of it argument:

long factorial (a r g)
long arg ;
{

long fact 1 , j ;

for (j=l ; j < a r g ; j++)
fact = f ac t * j ;

return f act ;

Thi function actually returns the factorial of arg-l becau e the condi
tional expre ion is

j < arg

in tead of

j <= arg

The best way to avoid off-by-one error i to think through the problem
clearly and determine exactly when the loop will terminate. Al o. after
writing a function likeJactoriaf() you hould te t it with known value to
make ure it works. Thi i another r a on for keeping fun tion mall
the smaller they are, the ea ier they are to te t.

www.manaraa.com

Control Flow 105

4.3.5 Null Statements

Just as it is possible to omit one of the expressions in a for loop, it is also
possible to omit the body of the for loop. This is useful when the loop's work is
being performed by the expressions. For example, the following function reads
spaces from the terminal and discards them. A space is defined by the runtime
library isspaee() function as space characters, tabs, and newlines.

#include <stdio.h>
#include <ctype.h> /* Header file for isspace(). */

void skip_spaces()
{

int c;

for (c = getchar(); isspace(c); c = getchar())
/* Null Statement */

ungetc (c, stdin); /* Put the nonspace
* character back in the
* buffer.
*/

The ungete() function is a library function that places a character in the input
buffer. It takes two arguments. The first is the character to be replaced, and the
second is the stream in which it is to be deposited. The macro name stdin is
defined in <stdio.h> and represents the standard input stream, usually your
terminal. The ungete() function is particularly useful in situations like this one
where it is necessary to read one more character than you want to process. In the
case of skip _spaees() , for example, it is necessary to read the first nonspace
character to know where the spaces end. The ungete() function places this
nonspace character back in the input buffer so that it is the character read by the
next getehar() call.

There is no need for a statement in the for loop, so we use a null statement,
which is just a lone semicolon. It is a good idea to put the semicolon on a
separate line to make it more visible since it is potentially misleading. For
example, if we place the semicolon on the same line, as shown below, a casual
reader might assume that the ungete() function is the body of the for loop.

www.manaraa.com

106

#include <stdio.h>

void skip_spaces()
{

int c;
for (c = getchar(); isspace(c); c

ungetc(c,stdin);

Chapter 4

getchar());

This program can also be written using a while loop instead of a for loop:

#include <stdio.h>

void skip_spaces()
{

while (isspace(c = getchar()))
/* Null Statement */

ungetc(c,stdin);

In this version, the argument to isspace() is the expression

c = get char ()

Box 4-5: Bug Alert - Misplaced Semicolons

A common programming mi take i to place a emicolon immediately af
ter a control flow tatement-for in tance, writing

if (j 1) ;

j = 0 ;

instead of

if (j == 1)

j = 0 ;

Placing a semicolon after the test condition cau es the compiler to ex
ecute a null statement whenever the if expres ion is true. It is as if you
had written

if (j == 1)

/* null statement */
j = 0 ;

A a re ult, j get a igned zero regard Ie of wh ther j equal one. ote
that the null statement is yntactically legal , 0 the mi placed emicolon
doe not cause a compiler error.

www.manaraa.com

Control Flow 107

So c is ftrst assigned the value of the next input character, and then c is passed as
an argument to isspace(). If c is a space, isspace() returns a nonzero value
making the loop condition true. The body of the loop, however, is a null
statement, so control returns to the top of the loop where the process is repeated.
When c is not a space, isspace() returns zero, making the test condition false, and
program control flows to the ungetc() call.

4.4 Nested Loops

Just as it is possible to nest if statements to any depth, it is also possible to nest
looping statements. The key point to remember with nested loops is that the
inner loops must ftnish before the outer loops can resume iterating. Consider the
following program which prints a multiplication table up to 10. (The \t fonnat is
a special escape sequence that causes the computer to print a tab.)

#include <stdio.h>

/* print a multiplication table using nested loops
*/

main()

int j, k;
printf(" 1 2 3 4 5 6 7 8 9 10\n");
printf(" ------------------------------\n");
for (j = 1; j <= 10; j++) /* outer loop */
{

printf("%5dl", j);
for (k=l; k <= 10; k++) /* inner loop */

printf("%5%d", j*k);
printf ("\n");

exit (0);

www.manaraa.com

108 Chapter 4

The output would be

1 2 3 4 5 6 7 8 9 10

11 1 2 3 4 5 6 7 8 9 10

21 2 4 6 8 10 12 14 16 18 20

31 3 6 9 12 15 18 21 24 27 30

41 4 8 12 16 20 24 28 32 26 40

51 5 10 15 20 25 30 35 40 45 50

61 6 12 18 24 30 36 42 48 54 60

71 7 14 21 28 35 42 49 56 63 70

81 8 16 24 32 40 48 54 64 72 80

91 9 18 27 36 45 54 63 72 81 90
101 10 20 30 40 50 60 70 80 90 100

For each value of j, the program first prints j, then loops through ten values of k,
printing j*k for each iteration, and then prints a newline. Proper indentation
becomes especially important with nested loops. The indentation in our pro
gram, for example, makes it readily apparent that the statement

printf("%5d", j*k);

belongs to the innermost for loop. The %5d conversion specifier forces printf()

to output 5 characters for each number. If the number requires fewer characters,

it is preceded with padding spaces. See Appendix A for more information about
printf()·

The fol1owing example is a variation on the make _int() function. This new
function, however, is capable of parsing floating-point values as well as inte
gers. It utilizes many of the constructs we have discussed, including nested
loops. Note that the for loop is nested in a while loop, which is itself nested
within an if statement.

www.manaraa.com

Control Flow

#include <stdio.h>
#include <ctype.h>

#define DECIMAL POINT

double parse_num()
{

, ,

int c, j, digit_count = 0;
double value = 0, fractional_digit;

while (isdigit(c = getchar())
{

value
value

value * 10;
value + (c - '0');

109

/*

*
When c is not a digit, test to see if it is a
decimal point.

*/
if (c == DECIMAL_POINT) /* if yes, get

* fraction

while (isdigit(c
{

*/
get char ()))

digit_count++;
fractional_digit = c - '0';
for (j=O; j < digit_count; j++)

fract_digit fractional_digit/10;
value = value + fractional_digit;

ungetc(c, stdin);
return value;

www.manaraa.com

110 Chapter 4

4.5 A Simple Calculator Program
Using the functions from this chapter and Chapter 3, we can write a simple
calculator program, as shown below.

#include <stdio.h>

main ()
{

extern double parse_num(}, evaluate(};
extern void skip_spaces(};
double opl, op2, answer;
int operator;

printf("Enter <number> <op> <number><newline>: "};
skip_spaces(};
opl = parse_num(};
skip_spaces ();
operator = getchar(};
skip spaces(};
op2 = parse_num(};
answer = evaluate (opl, operator, op2 };
printf("%f\n", answer };
exit(0 };

When executed, this program enables you to type a simple arithmetic expression
which is then calculated. For example,

Enter <number> <op> <number><newline>: 3.1*2
6.2

The skip _spaces() function allows you to enter any number of spaces between
the operands and operator. Note, however, that the program cannot handle
complicated expressions, such as,

3* (2.3+4.5) /8.1

In Chapter 12, we expand the program so that it can handle complex expressions
such as this one.

It is worth noting that scanf() has the parse _ num() and skip _spaces() functional
ity built into it. So you could rewrite the preceding program more simply, as
follows. (The % If format specifier indicates a double variable.)

www.manaraa.com

Control Flow

#include <ctype.h>
#include <stdio.h>

main()
{

double opl, op2, answer, evaluate();
char operator;

printf("Enter <number> <op> <number><newline>: ");
scanf(''%If %c %If'', &opI, &operator, &op2);
answer = evaluate(opl, operator, op2);
printf("%f\n", answer);
exit (0);

111

We can make the program even more efficient by passing the result of evaluate()
directly to printf(), without storing it in the variable answer:

#include <ctype.h>
#include <stdio.h>

main()
{

double opl, op2, evaluate();
char operator;

printf("Enter <number> <op> <number><newline>: ");
scanf("%If %c %If", &opI, &operator, &op2);
printf("%f\n", evaluate (opl, operator, op2));
exit (0);

4.6 The break and continue Statements

You have already seen the break statement in connection with the switch state
ment. In that context, it prevents program flow from falling through to the next
case value. Another way of looking at it is that the break statement prematurely
terminates the switch statement, causing program control to flow to the next
statement after the switch. This is also break's purpose when used within a
looping statement.

www.manaraa.com

112 Chapter 4

Suppose you want to process 50 characters or an entire line, whichever comes
first. You could write

for (cnt = 0; cnt < 50; cnt++)

c = getchar();
if (c == '\ n')

break;
else

/* process character */

/* program continues here after break statement */

As soon as a newline character is encountered, the break statement is executed,
and program control flows to the statement following the for loop. Otherwise,
the loop iterates until cnt equals 50.

break statements should be used with caution since they force program control
to jump discontinuously to a new place. Too many break statements can make a
program difficult to follow. There is usually another way to write the code
without using break. We talk more about some of these methods in the follow
ing chapter. There is, however, no equally good substitute for using the break
statement in a switch construct.

The continue statement provides a means for returning to the top of a loop
earlier than normal. It is particularly useful when you want to bypass the
remainder of the loop for some reason. Suppose you want to modify the
make _int() function so that it skips nondigit characters, as shown on the follow
ing page. If the input is A3b-45C, for example, the function would return 345.

www.manaraa.com

Control Flow

#include <stdio.h>
#include <ctype.h>

int mod_make_int()
{

int num = 0, digit;

while ((digit = getchar()) != '\n')
{

if (isdigit(digit) == 0)
continue;

num num * 10;
num = num + (digit - , 0') ;

return num;

113

The if statement checks to see whether digit is in fact a digit. If it isn't, the
continue statement is executed. This returns the program to the top of the while
loop, where it reads in the next character.

As with break statements, continue statements should be used judiciously since
they break up the natural control flow. However, they are much preferred over
goto statements.

4.7 The goto Statement

Few programming statements have produced as much debate as the goto state
ment. The goto statement is necessary in more rudimentary languages, but its
use in high-level languages is generally frowned upon. Nevertheless, most
high-level programming languages, including C, contain a goto statement for
those rare situations where it can't be avoided.

The purpose of the goto statement is to enable program control to jump (or
perhaps leap) to some other spot. The destination spot is identified by a state
ment label, which is just a name followed by a colon. The label must be in the
same function as the goto statement that references it. The program on the
following page illustrates how the goto statement works.

www.manaraa.com

114 Chapter 4

#include <stdio.h>
#include <math.h> /* for sqrt() function */

main ()
{

int num;

scanf("%d", &num);
if (num < 0)

goto bad_val;
else

printf("The square root of num is if",
sqrt (num));

goto end;

bad_val: printf("Error: Negative Value.\n");
exit (1);

end: exit (0);
}

As with most usages of goto, this program can be written in a much better
fashion without using goto (see the version at the beginning of this chapter). It is
difficult, in fact, to describe any general conditions where a goto statement
should be used. There are, however, specific instances where a goto statement
makes the code more efficient or enhances readability. For a full discussion of
these cases, we recommend the 1968 paper by E. W. Dijkstra, entitled Goto
Statement Considered Harmful. In general, you should not use gotos unless you
have a very good reason for doing so.

4.8 Infinite Loops
An infinite loop is a loop that does not contain a terminating condition or a loop
in which the terminating condition is never reached. In most instances, infinite
loops are produced by bugs in the program. For example,

for (j=O; j < 10; j++)

j = 1;

This loop will never finish because j is reassigned the value on each iteration.

www.manaraa.com

Control Flow 115

On the other hand, there are certain situations where you want an infinite loop.
There are a number of ways to write infinite loops, but the two most common
are

and

while (1)
statement;

for (;;)
statement;

Both statements have equivalent functionality, so the choice is a matter of aes
thetics. To get out of an infinite loop, you need to abort the program manually.
Sometimes this is what you want. For example, we can rewrite the calculator
program with an infinite loop:

#include <ctype.h>
#include <stdio.h>

main ()
{

double opl, op2, answer, evaluate();
char operator;

while(l)
{

printf("Enter <number> <op> <number>\
<newline>: If);

scanf(''%If %c %If'', &opl, &operator, &op2);
answer = evaluate (opl, operator, op2);
printf("%f\n", answer);

The while(1) loop causes the program to run continuously until you abort it. On
most systems, you can abort a program by typing CTRL-C.

www.manaraa.com

116 Chapter 4

Exercises
1. Every computer is limited in the amount of precision it can represent for

floating-point numbers. At some point, where epsilon is very small, the
following expression will be true:

1.0 == 1.0 + epsilon

Write a program to find the largest value of epsilon on your computer.
Note that the value of epsilon may be different for floats and doubles.
Find both values (and the value for long doubles if your compiler supports
them). Also, use 1.0 not 0.0 to test epsilon because most computers have
special hardware instructions for handling zero arithmetic.

2. Rewrite the following program without using break, continue, or goto:

/* Count the number of a's in input */

#include <stdio.h>
#include <ctype.h>

main ()
{

int num_a = 0;
char C;
c = getchar();
while (1)

{

if (c == , \n')
break;

if (isdigit(c))
continue;

if (c == , a')
goto add_num_a;

get_next_char: c = getchar();
goto end_loop;

add_num_a: num_a++;
goto get_next_char;

end_loop:
}

exit (0);

www.manaraa.com

Control Flow 117

3. Write two programs that return the number of x's returned by getchar().
Write the first one using only if and goto statements. Write the second one
using only while, break, and continue. Which version is better? Why?

4. Write a function that accepts an integer number and writes that number of
spaces. Using this function, write a program that reads characters from
standard input, and echoes them to standard output, but replaces tabs with
five spaces.

5. Many programs that require moving character data from one place to
another use a checksum mechanism to ensure that the data is transferred
correctly. The checksum technique requires a function that sums the code
values of all the characters being sent. If the letters a, b, and c are being
sent, for instance, the sum would be 294 because the ASCII values of these
characters are 97, 98, and 99. The sending part of the program would then
send this sum value along with the characters. The receiving part of the
program computes the sum of the characters it receives and compares it
with the sum from the sending component. If the sums match, there is a
high probability that the data was transferred correctly. Write a checksum()
function that returns the sum of a line entered from the keyboard. Use an
unsigned integer to store the sum so that the value will behave predictably
if an overflow occurs.

6. Write two versions of a function that classifies its char argument as one of

WHITE_SPACE (space, '\0', '\r', or '\1:')
PUNCTUATION (",! ;:(). ')
ALPHA (a-z, A-Z)
NUMERIC (0 - 9)
UNKNOWN (anything else)

For the first version, use only if, else, and return statements. For the
second version, use only switch and return statements. Which version is
better? Why?

7. Write a program that prints out the letters from a to z, and A to Z, and their
integer values.

8. Expand the program in Exercise 7 so that it prints out the integer values in
decimal, octal, and hexadecimal format.

www.manaraa.com

Chapter 5

Operators and Expressions

We must either institute conventional forms of
expression or else pretend that we have nothing to express.

- George Santayana, Soliloquies in England

Operators are the verbs of the C language that let you calculate values. C's rich
set of operators is one of its distinguishing characteristics. You have already
seen a number of C operators in the preceding chapters, such as + (addition), /
(division), < (less than), and = (assignment). The operator symbols are com
posed of one or more special characters. If an operator consists of more than one
character, you must enter the characters without any intervening spaces:

x <= Y
x < = Y

/* legal expression */
/* illegal expression */

In this chapter, we take another look at the previously mentioned operators and
introduce some new ones. We also describe expressions in greater detail.

You can think of operators as verbs and of operands as the subject and object of
those verbs. An expression consists of one or more operands and zero or more
operators linked together to compute a value. For instance,

a + 2

www.manaraa.com

Operators and Expressions 119

is a legal expression that results in the sum of a and 2. The variable a all by
itself is also an expression, as is the constant 2, since they both represent a value.
There are four important types of expressions:

• Constant expressions contain only constant values. For example, the
following are all constant expressions:

5
5 + 6 * 13 / 3.0
, a'

• Integral expressions are expressions that, after all automatic and explicit
type conversions, produce a result that has one of the integer types. If j
and k are integers, the following are all integral expressions:

j

j * k
j / k + 3
k - 'a'
3 + (int) 5.0

• Float expressions are expressions that, after all automatic and explicit
type conversions, produce a result that has one of the floating-point
types. If x is a float or double, the following are floating-point expres-
sions:

x
x + 3
x / y * 5
3.0
3.0 - 2

3 + (float) 4

• Pointer expressions are expressions that evaluate to an address value.
These include expressions containing pointer variables, the "address of'
operator (&), string literals, and array names. If p is a pointer and j is
an int, the following are pointer expressions:

P
&j
P + 1
"abc"
(char *) OxOOOfffff

The meaning of pointer arithmetic (such as p + I) is described in the
next chapter.

www.manaraa.com

120 Chapter 5

Class of
Operators in that class Associativity Precedence operator

primary () [] -> Left-to-Right HIGHEST

unary cast operator
sizeof Right-to-Left & (address of)
* (dereference) - + - ++ - !

multiplicative * 1 % Left-to-Right

additive + - Left-to-Right

shift « » Left-to-Right

relational < <= > >= Left-to-Right

equality -- != Left-to-Right

bitwise AND & Left-to-Right

bitwise II. Left-to-Right exclusive OR

bitwise I Left-to-Right inclusive OR

logical AND && Left-to-Right

logical OR II Left-to-Right

conditional ? Right-to-Left

assignment = += -= *= Right-to-Left
1= %= »= «=

&= 11.= ~

comma ,
Left-to-Right LOWEST

Table 5-1. Precedence and Associativity of C Operators.

www.manaraa.com

Operators and Expressions 121

5.1 Precedence and Associativity

All operators have two important properties called precedence and associativity.
Both properties affect how operands are attached to operators. Operators with
higher precedence have their operands bound, or grouped, to them before opera
tors of lower precedence, regardless of the order in which they appear. For
example, the multiplication operator has higher precedence than the addition
operator, so the two expressions

2 + 3 * 4
3 * 4 + 2

both evaluate to 14-the operand 3 is grouped with the multiplication operator
rather than the addition operator because the multiplication operator has higher
precedence. If there were no precedence rules, and the compiler grouped oper
ands to operators in left-to-right order, the ftrst expression,

2 + 3 * 4

would evaluate to 20. Table 5-1 lists every C operator in order of precedence.

In cases where operators have the same precedence, associativity (sometimes
called binding) is used to detennine the order in which operands are grouped
with operators. Grouping occurs in either right-ta-left or left-ta-right order,
depending on the operator. Right-to-Ieft associativity means that the compiler
starts on the right of the expression and works left. Left-to-right associativity
means that the compiler starts on the left of the expression and works right. For
example, the plus and minus operators have the same precedence and are both
left-to-right associative:

a + b - c; /* add a to b, then subtract c */

The assignment operator, on the other hand, is right-associative:

a = b = c; /* assign c to b, then assign b to a */

www.manaraa.com

122 Chapter 5

5.1.1 Parentheses
The compiler groups operands and operators that appear within the parentheses
first, so you can use parentheses to specify a particular grouping order. For
example,

/* subtract 3 from 2, then multiply that by 4 -
* result is -4
*/

(2 - 3) * 4

/* multiply 3 and 4, then subtract from 2 -
* result is -10
*/

2 - (3 * 4)

In the second case, the parentheses are unnecessary since multiplication has a
higher precedence than addition. Nevertheless, parentheses serve a valuable
stylistic function by making an expression more readable, even though they may
be redundant from a semantic viewpoint. It is a good idea to enclose all but the
simplest expressions in parentheses. This ensures that the expression is eva
luated correctly, and it enables you and others to decipher an expression without
referring to the precedence table.

In th~ event of nested parentheses, the compiler groups the expression enclosed
by the innermost parentheses first. Figure 5-1 shows how a compiler might
group and evaluate the expression

1 + ((3 + 1)/(8 - 4) - 5)

1 + ((3 + 1) / (8 - 4) - 5)

/'
1 +(4/(8-4)-5)

/'
1 + (4/4 - 5)

/'
1 + (1 - 5)

/'
1 +-4

/'
-3

The innermost parentheses
are evaluated first. The
expressions (3 + 1) and
(8 - 4) are at the same
depth, so they can be
evaluated in either order.

Division has a higher
precedence than subtraction.

Final result.

Figure 5-1. Evaluation of an Expression Enclosed by Parentheses.

www.manaraa.com

Operators and Expressions 123

One way to evaluate expressions is to go through the process shown in Figure
5-1, evaluating each subexpression in order. Another method that many compil
ers use is to create a tree structure as shown in Figure 5-2. Each operator, called
a node, points to its operands, called leaves. The compiler evaluates the expres
sion beginning at the bottom of the inverted tree. As each operator-operands
combination is evaluated, the result is placed in the operator node, becoming an
operand for the operator at the next higher level.

Note that there are two subexpressions at the very bottom of the tree. The
compiler is free to evaluate them in any order--one compiler may evaluate (3 +
1) first while another evaluates (8 - 4) first. This is true of most operators,
although there are a few for which the operands must be evaluated in left-to-
right order.

~
leaves

4/
Figure 5-2. Representation of an Expression as an Inverted Binary

Tree.

5.1.2 Order of Evaluation
An important point to understand is that precedence and associativity have little
to do with order of evaluation, another important property of expressions. The
order of evaluation refers to the actual order in which the compiler evaluates
operators. Note that this is independent of the order in which the compiler
groups operands to operators. For most operators, the compiler is free to evalu
ate subexpressions in any order it pleases. It may even reorganize the expression,

www.manaraa.com

124 Chapter 5

so long as the reorganization does not affect the final result. For example, given
the expression

(2 + 3) * 4

the compiler might first add 2 and 3 and then multiply by 4. On the other hand,
a compiler is free to reorganize the expression into

(2 * 4) + (3 * 4)

since this gives the same result.

The order of evaluation can have a critical impact on expressions that contain
side effects, as explained in Box 5-2. Moreover, reorganization of expressions
can sometimes cause overflow conditions.

5.2 Unary Plus and Minus Operators

Operator Symbol Form Operation

unary minus - -x negation of x

unary plus + +x value of operand

Table 5-2. Unary Arithmetic Operators.

The plus and minus operators are called unary operators because they take only
one operand. The operand can be any integer or floating-point value. The type
of the result is the type of the operand after integral promotions.

The unary plus sign is an ANSI feature not found in older ~ompilers. The result
is the value of the operand after integral promotions. In other words, it doesn't
have any effect except to promote small integer types.

The minus operator does just what you would expect-it returns the negation of
its argument. If m equals 5, -m equals -5. On the other hand, if m equals -5,
-m equals 5. In short, the expression

-e

is a shorthand for the expression

o - (e)

where e is any integer or floating-point expression.

www.manaraa.com

Operators and Expressions 125

Do not confuse the unary minus operator with the binary subtraction operator.
Even though they use the same symbol, they are different operators. For exam
ple,

j = 3 - -x

is interpreted as

j = (3 - (-x));

The ftrst dash is a subtraction operator; the second is a unary minus sign. Note
that the space between the two dashes prevents them from being interpreted as a
decrement operator.

5.3 Binary Arithmetic Operators

Operator Symbol Form Operation

multiplication * x * y x times y
division / x / y x divided by y
remainder % x % y remainder of x divided

byy

addition + x + y x plus y
subtraction - x - y x minus y

Table 5-3. Binary Arithmetic Operators.

Most of the arithmetic operators should already be familiar to you. The only
new one is the remainder (%) operator. The multiplication, division, and re
mainder operators are called multiplicative operators and have a higher
precedence than the additive operators (addition and subtraction). The operands
to the multiplicative operators must be of integral or floating-point type. The
additive operators accept operands whose type is integral, floating-point, or
pointer. All of the arithmetic operators bind from left to right (see Table 5-1).
Looking at the third example in Table 5-4, note that the subexpression

3/4

evaluates to zero because it is an integer expression-the fractional part of the
result is truncated.

Also note that if the right operand of a division expression is zero, the results are
undefined.

www.manaraa.com

126 Chapter 5

Given the following declarations:

int rn = 3, n = 4;
float x = 2.5, Y = 1. 0;

Expression Equivalent Expression Result

m+n+x+y (((m + n) + x) + y) 10.5
m+x* n+y ((m + (x* n) + y)) 14.0
x/y+m/n (x / y) + (m / n) 2.5
x-y* m+y/n (x - (y* m)) + (y / n) -0.25
x/O x/O undefined

Table 5-4. Examples of Expressions Using Arithmetic Operators.

5.3.1 The Remainder Operator - 0/0

Unlike the other arithmetic operators, which accept both integer and floating
point operands, the remainder operator (sometimes called the modulus operator)
accepts only integer operands. The resulting value is the remainder of the first
operand divided by the second operand. For example, the expression

9 % 5

has a value of 4 because 5 goes into 9 once with a remainder of 4. The
expression

10 % 5

has a value of zero because 5 goes into 10 evenly. If either operand is negative,
the remainder can be negative or positive, depending on the implementation (see
Box 5-1). The ANSI Standard requires the following relationship to exist be
tween the remainder and division operators:

a equals a%b + (a/b) * b for any integral values of a and b

As with division expressions, the result of a remainder expression is undefined if
the right operand is zero.

A frequent application of the remainder operator is to perform some action at
regular intervals. The following program, for example, reads a line of input and
prints it out, inserting a newline after every five characters.

www.manaraa.com

Operators and Expressions

#include <stdio.h>

main()
{

int c, j = 0;

printf("Enter string to be squished: H);
while ((c = getchar ()) != , \n')
{

127

if (j%5 == 0) /* if j goes into 5 evenly */
printf("\n");

putchar(c);
j++;

exit (0);

If this program were called breakline, execution would look like the following:

$ breakline
Needless redundancy is the hobgoblin ...

Needl
ess r
edund
ancy
is th
e hob
gobli
n ...

Note that the program outputs a newline at the very beginning. This is because j
is initialized to zero, and dividing any number into zero always results in zero,
with zero remainder.

To make this program more general and useful, you could tum it into a function
whose argument is the interval value. This improved function appears on the
following page.

www.manaraa.com

128

#include <stdio.h>

void break line(interval
int interval;

int c, j = 1;

Chapter 5

while ((c = get char ()) != '\n')
{

put char (c);
if (j%interval 0)

printf("\n");
j++;

Note that in this version we initialize j to one rather than zero and place the
putchar() function before the interval test. This prevents the function from
outputting an initial newline. This function would be useful as part of a text
formatter that supports adjustable line lengths. A drawback of this function,
however, is that there is no provision against inserting a newline in the middle of
a word. We leave it as an exercise to correct this deficiency.

5.4 Arithmetic Assignment Operators

Operator Symbol Form Operation

assign = a = b put the value of b into a
add-assign += a += b put the value of a+b into a
subtract-assign -= a - = b put the value of a-b into a
multiply-assign *= a *= b put the value of a*b into a
divide-assign 1= a /= b put the value of alb into a
remainder-assign 0/0= a %= b put the value of a%b into a

Table 5-5. Arithmetic Assignment Operators.

The assign operator (=) should be familiar. It causes the value of the right-hand
operand to be written into the memory location of the left-hand operand. In
addition, an assignment expression itself has a value, which is the same value
that is assigned to the left-hand operand. The left-hand operand, sometimes
called an lvalue, must refer to a memory location.

www.manaraa.com

Operators and Expressions

Box 5-1: Bug Alert - Integer Division and
Remainder

129

When both operand of the division operator (f) are integers, the re ult i
an integer. If both operands are positive and the divi ion i inexact, the
fractional part i truncated:

5/2
7/2
1/3

evaluates to
evaluates to
evaluates to

2
3
o

If either operand is negative. however. the compiler i free to round the
re ult either up or down:

-5/2
7/-2
-1/-3

evaluates to
evaluates to
evaluates to

-2 or -3
-3 or -4
o or -1

By the ame token. the sign of the result of a remainder operation
undefined by the C Standard:

-5 % 2
7 % -4

evaluates to
evaluates to

1 or -1
3 or -3

Obviou Iy. you hould avoid divi ion and remainder operation with neg
ative number ince the results can vary from one compiler to another.

If the sign of the remainder i important to your program' operations,
you hould u e the runtime library div() function which compute the
quotient and the remainder of it two argument . The ign of both re ults
is determined in a guaranteed and portable manner. (See the de cription
of di\l() in Appendix A for more information.)

As mentioned previously, the assign operator has right-to-Ieft associativity, so
the expression

a = b = c d 1;

is interpreted as

(a = (b = (c (d 1)))) ;

www.manaraa.com

130 Chapter 5

First 1 is assigned to d, then d is assigned to c, then c is assigned to b, and finally
b is assigned to a. The value of the entire expression is 1. This is a convenient
syntax for assigning the same value to more than one variable. Note, however,
that each assignment may cause quiet conversions, so

int j;
double f;
f = j = 3.5;

assigns the truncated value 3 to both! and j. On the other hand,

j f 3.5;

assigns 3.5 to! and 3 to j.

In addition to the simple assign operator, the C language supports five additional
assignment operators that combine assignment with each of the arithmetic opera
tions. The equivalences are shown in Figure 5-3.

For example, the expression

j = j * 5;

can be written

j *= 5;

One of the main reasons for using the arithmetic assignment operators is to avoid
spelling mistakes and make code more readable. For example, the expression,

op_big_x_dimension 3

can be written:

op_big_x_dimension 3 *= 2;

The second version is easier to read and to write and contains fewer opportuni
ties for spelling errors. This issue becomes even more important when
referencing structure and union members, as described in Chapter 8.

In addition, use of the arithmetic assignment operators sometimes produces more
efficient object code. The increased efficiency is due to the fact that some
computers have special machine instructions to perform arithmetic-assign com
binations. A good compiler will usually rewrite an expression for you to take
advantage of this feature.

Another feature of the arithmetic assignment operators is that if the lvalue
contains side effects, the side effects occur only once. This feature has special
significance for arrays, as explained in the next chapter. See Box 5-2 for more
information about side effects.

www.manaraa.com

Operators and Expressions

is the same as
a += b4 ~a a + b

a -= b4 ~ a = a - b

a *= b4 ~ a = a * b

a /= b4 ~ a = a / b

a %= b4 ~ a = a % b

Figure 5-3. Arithmetic Assignment Operator Equivalences. These
equivalences are true so long as a has no side effects.

131

As shown in Table 5-1, the assign operators have relatively low precedence.
This leads to interesting consequences. For example, the following two expres
sions are not the same:

j = j * 3 + 4;
j *= 3 + 4;

The addition operator has higher precedence than the assign operator, and the
multiplication operator has higher precedence than the addition operator, so the
two expressions are interpreted as follows:

j j * 3 + 4 j *= 3 + 4

1
l

j *= (3 + 4)

l
j ((j * 3) + 4) j = (j * (3+4))

Table 5-6 gives some more examples of expressions using these operators.

www.manaraa.com

132 Chapter 5

Given the following declarations:
int m = 3, n = 4;
float x = 2.5, Y = 1. 0;

Expression Equivalent Expression Result

m+=n+x-y m = (m + ((n + x) - y)) 8
m 1= x* n + y m = (m 1 ~(x* n) + y)) 0
n%=y+m n = (n % y + m)) 0
x+=y-=m x = (x + (y = (y - m))) 0.5

Table 5-6. Examples of Expressions Using Arithmetic Assignment
Operators.

5.5 Increment and Decrement
Operators

In the previous chapter, we introduced the increment and decrement operators as
shorthands for adding 1 to and subtracting 1 from a variable. As Table 5-7
indicates, there are actually two versions of each operator. If the operator comes
after the variable, it is called a POStfIX operator. If it comes before the lvalue
expression, it is called a prefIX operator. The difference between the two types of
operators is subtle but can be very important, as we explain in this section.

Operator Symbol Form Operation

postfix increment ++ a++ get value of a, then increment a
postfix decrement - a-- get value of a, then decrement a
prefix increment ++ ++a increment a, then get value of a
prefix decrement - --a decrement a, then get value of a

Table 5-7. The Increment and Decrement Operators.

Like the unary minus operator, the increment and decrement operators are unary.
The operand must be a scalar lvalue-it is illegal to increment or decrement a
constant or a structure. It is legal to increment or decrement pointer variables,
but the meaning of adding one to a pointer is different from that of adding one to
an arithmetic value. We describe pointer arithmetic in the next chapter.

www.manaraa.com

Operators and Expressions 133

The postfix increment and decrement operators fetch the current value of the
variable and store a copy of it in a temporary location. The compiler then
increments or decrements the variable. The temporary copy, which has the
variable's value before it was modified, is used in the expression. For example

main()
{

int j 5, k = 5;

printf("j: %d\t k: %d\n", j++, k--);
printf("j: %d\t k: %d\n", j, k);
exit (0);

The result is

j: 5 k: 5
j: 6 k: 4

In the first printf() call, the initial values of j and k are used, but once they have
been used they are incremented and decremented, respectively.

In contrast, the preflX increment and decrement operators modify their operands
before they fetch the values:

main()
{

int j 5, k = 5;

printf("j: %d\t k: %d\n", ++j, --k);
printf("j: %d\t k: %d\n", j, k);
exit (0);

The result of this version is

j: 6 k: 4
j: 6 k: 4

In many cases, you are interested only in the side effect, not in the result of the
expression. In these instances, it doesn't matter which operator you use. For
example, as a stand-alone assignment, or as the third expression in a for loop, the
side effect is the same whether you use the prefix or postfix versions:

x++;

is equivalent to

++x;

www.manaraa.com

134 Chapter 5

and the statement

for (j = 0; j <= 10; j++)

is equivalent to

for (j = 0; j <= 10; ++j)

Box 5-2: Bug Alert - Side Effects

The increment and decrement operators, and the assignment operator ,
cause side effects. That i , they not only result in a value but al 0 change
the value of a variable. A problem with side effect operator i that it i
not alway po ible to predict the order in which the ide effect occur.
Con ider the following tatement:

x = j * j++ ;

The C language does not specify which multiplication operand is to be
evaluated fir t. One compiler may evaluate the left-hand operand first,
while another evaluates the right-hand operand fir l. The results are
different in the two cases. If j equals 5 and the left-hand operand is
evaluated first, the expression will be interpreted a

x = 5 * 5 ; /* x is assigned 25 */

If the right-hand operand i evaluated first. the expression become

x = 6 * 5 ; /* x is assigned 30 */

Statements such as this one are non portable and should be avoided. The
ide effect problem also crop up in function calls because the C language

does not guarantee the order in which arguments are evaluated. For
example. the function call

f (a t a+ +)

is not portable becau e compilers are free to evaluate the argument In

any order they choo e.

To prevent ide effect bugs, follow this rule: If you use a side effect
operator in an expres ion, do /lot use the affected variable anywhere el e
in the expression. The ambiguous expre ion above, for in tance, can be
made unambiguous by breaking it into two a ignment:

x = j * j ;
++j ;

www.manaraa.com

Operators and Expressions 135

You need to be careful, however, when you use the increment and decrement
operators within an expression. Consider the rendition of the break _line() func
tion:

#include <stdio.h>

void break_line (interval
int interval;

int c, j=O;

while «c = getchar ()) != '\n')
{

if «j++ % interval) 0)
printf("\n");

putchar(c);

This works because we use the postfix increment operator. If we were to use the
prefix increment operator, the function would break the first line one character
early.

5.5.1 Precedence of Increment and Decrement
Operators

Note in Table 5-1 that the increment and decrement operators have the same
precedence but bind from right to left. So the expression

--j++

is evaluated as

-- (j++)

This expression is illegal because j++ is not an lvalue as required by the -
operator. In general, you should avoid using multiple increment or decrement
operators together. Table 5-8 shows a number of expressions involving incre
ment and decrement operators.

www.manaraa.com

136 Chapter 5

Given the following declarations:
int j = 0, m = 1, n = -1;

Expression Equivalent Expression Result

m++--j (m++)-(-j) 2
m += ++j*2 m = (m + ((++j)* 2) 3
m++* m++ (m++) * (m++) implementation-

dependent

Table 5-8. Examples of Expressions Using the Increment and
Decrement Operators.

5.6 Comma Operator

Operator Symbol Form Operation

comma , a , b evaluate a, evaluate b, result is b

Table 5-9. The Comma Operator.

The comma operator allows you to evaluate two or more distinct expressions
wherever a single expression is allowed. The result is the value of the rightmost
operand. The comma operator is one of the few operators for which the order of
evaluation is specified. The compiler must evaluate the left-hand operand first.

Although the comma operator is legal in a number of situations, it leads to
confusing code in many of them. By convention, therefore, the comma operator
is used primarily in the first and last expressions of a for statement. For
instance,

for (j = 0, k = 100; k - j > 0; j++, k--);

In this example, both j and k are initialized before the loop is entered. After each
iteration, j is incremented and k is decremented. It is equivalent to the following
while loop.

www.manaraa.com

Operators and Expressions

j = 0;
k = 100;
while (k - j < 0)
{

j++;
k--;

137

Note that this code could also be written

j = 0, k=100;
while (k - j < 0)

j++, k--;

Some programmers use the comma operator in this context, but we feel it is
better style to place each assignment on its own line to avoid confusion.

There is also a temptation to fit as much as possible into the for expressions. For
example, the break _line() function could be written

#include <stdio.h>

break_line (interval
int interval;

int c, j;

for (c=getchar(), j

if (j%interval 0)
printf("\n");

0; c ! = EOF; j++
, putchar(c)
, c = get char ())

Although this is more compact, it is not better since it is harder to read. In
particular, you should be wary about entering mUltiple assignments in the third
expression of a for loop.

www.manaraa.com

138 Chapter 5

5.7 Relational Operators

Operator Symbol Form Result

greater than > a > b 1 if a is greater than b; else 0
less than < a < b 1 if a is less than b; else 0
greater than or >= a >= b 1 if a is greater than or equal to

equal to b; else 0
less than or <= a <= b 1 if a is less than or equal to b;

equal to else 0
equal to a == b 1 if a is equal to b; else 0
not equal to != a != b 1 if a is not equal to b; else 0

Table 5-10. The Relational Operators.

These operators should be familiar from the previous chapter. In this chapter, we
discuss some of the ramifications of the precedence and associativity rules when
applied to these operators. Note first that all of these operators have lower
precedence than the arithmetic operators. The expression

a + b * c < d / f

is evaluated as if it had been written

(a + (b * c)) < (d / f)

Box 5-3: Bug Alert - Comparing Floating-Point
Values

It i very dangerou to compare floating-point value for equality becau e
floating-point repre entations are inexact for some number. For exam
ple. the following expre ion. though algebraically true, will evaluate to
false on most computer :

(1 . 0/3 . 0 + 1 . 0/3 . 0 + 1 . 0/3 . 0) == 1 . 0

Thi evaluate to 0 (fal e) becau e the fraction J .0/3.0 contain an infinite
number of decimal place (3.33333 ...). The computer i only capable of
holding a limited number of decimal place, 0 it round each occurrence
of 1/3. A are ult, the left-hand ide of the expre ion doe not equal 1.0
exactly.

To avoid bugs cau ed by inexact floating-point representation , you
hould refrain from u ing trict equality compari on with floating-point

type .

www.manaraa.com

Operators and Expressions 139

Among the relational operators, the ftrst four in Table 5-10 have the same
precedence. The == and != operators have lower precedence. All of the rela
tional operators have left-ta-right associativity. Table 5-11 illustrates how the
compiler parses complex relational expressions.

Given the following declarations:
int j = 0, m = 1, n = -1;
float x = 2.5, Y = 0.0;

Expression Equivalent Expressions

j>m j>m
ml n < x (m I n) < x
j<=m>=n (0<= m) >=n)
j<=x==m (0 <=x) ==m)
-x+j==y>n>m «-x) + j) == «y > n) >= m)
x += (y >= n) x = (x + (y >= n))
++j == m != y * 2 «++j) == m) != (y*2)

Table 5-11. Examples of Expressions Using the Relational
Operators.

5.8 Logical Operators

Operator Symbol Form Result

Result

0
1
1
1
0
3.5
1

logical AND && a && b 1 if a and b are nonzero; else 0

logical OR II a II b 1 if a or b is nonzero; else 0

logical negation ! ! a 1 if a is zero; else 0

Table 5-12. The Logical Operators.

In algebra, the expression

x < y < z

is true if y is greater than x and less than z. Unfortunately, this expression has a
very different meaning in C, since it is evaluated as

(x < y) < z

The subexpression (x < y) is evaluated first and results in either 0 and 1. So in
C, the expression is true if x is less than y and z is greater than 1, or if x is not

www.manaraa.com

140 Chapter 5

less than y and z is greater than zero. To obtain the algebraic meaning, you must
rewrite the expression using relational operators.

The logical AND operator (&&) and the logical OR operator (II) evaluate the
truth or flilsehess of pairs of expressions. The AND operator returns TRUE only
if both expressions are TRUE. The OR operator returns TRUE if either expres
sion is TRUE. To test whether y is greater than x and less than z, you would
write

(x < y) && (y < z)

The logical negation operator (!) takes only one operand. If the operand is
TRUE, the result is FALSE; if the operand is FALSE, the result is TRUE.

Recall that in C, TRUE is equivalent to any nonzero value and FALSE is
equivalent to zero. Table 5-13 shows the logical tables for each operator, along
with the numerical equivalent. Note that all of the operators return 1 for TRUE
and 0 for FALSE.

Operand Operator Operand Result

zero && zero 0
nonzero && zero 0

zero && nonzero 0
nonzero && nonzero 1

zero zero 0
nonzero zero 1

zero nonzero 1
nonzero nonzero 1

zero 1
NA nonzero 0

Table 5-13. Truth Table for C's Logical Operators.

The operands to the logical operators may be integers or floating-point objects.
The expression

1 &&-5

results in 1 because both operands are nonzero. The same is true of the
expression

0.5 && -5

Logical operators (and the comma and conditional operators) are the only opera
tors for which the order of evaluation of the operands is defined. The compiler

www.manaraa.com

Operators and Expressions 141

must evaluate operands from left to right. Moreover, the compiler is guaranteed
not to evaluate an operand if it's unnecessary. For example, in the expression

if ((a != 0) && (b/a == 6.0))

if a equals zero, the expression (b/a == 6) will not be evaluated. This rule can
have unexpected consequences when one of the expressions contains side effects
(see Box 5-4).

Table 5-14 shows a number of examples that use relational and logical operators.
Note that the logical NOT operator has a higher precedence than the others. The
AND operator has higher precedence than the OR operator. Both the logical
AND and OR operators have lower precedence than the relational and arithmetic
operators.

Given the following declarations:

int j = 0, m = 1, n = -1;
float x = 2.5, y = 0.0;

Expression Equivalent Expression Result

j&&m U) && (m) 0
j < m && n < m (j < m) && (n < m) 1
m+n II!j (m + n) II (!i) 1
x * 5 && 511 m / n ((x * 5) && 5) II (m / n) 1
j <= 10 && x >= 1 && m ((j <= 10) && (x >= 1)) && m 1
!x II !n II m + n ((!x) II (!n)) II (m + n) 0

x*y<j+mll n ((x * y) < (j + m)) II n 1
(x > y) + !j II n++ ((x> y) + (!i)) II (n++) 1
(j II m) + (x II ++n) (j II m) + (x II (++n)) 2

Table 5-14. Examples of Expressions Using the Logical Operators.

A complex relational expression is normally used as the conditional part of a
looping statement, or in an if statement. Linking expressions with the logical
AND operator is equivalent to using nested if statements. The expression

if ((a < b) && (b < c))

stmt;

is functionally equivalent to

if (a < b)

if (b < c)

stmt;

www.manaraa.com

142 Chapter 5

Box 5-4: Bug Alert - Side Effects in Relational
Expressions

Logical operator (and the conditional and comma operator) are the only
operator for which the order of evaluation of the operand i defined.
For these operator, a compiler must evaluate operands from left to right.
However, a compiler evaluate only a much of a relational expre sion a
it need to determine the re ult. In many ca es, thi mean that the
compiler doe not need to evaluate the entire expre ion. For in tance,
consider the following expres ion:

if ((a < b) && (c == d))

The compi ler begins by evaluating (a < h). If a i not Ie than b, the
compiler know that the entire expression is false, 0 it will not evaluate
(c == d). This can cause problems if orne of the expres ion contain
ide effect:

if ((a < b) && (c == d ++))

In this ca e, d i incremented only when a is less than h. Thi mayor
may not be what the programmer intended. In general, you should avoid
using ide effect operator in relational expression .

This is true so long as there is no else present. However, the sequence

if ((a < b) && (b < c))

stmtl;
else

stmt2;

is not the same as

if (a < b)

if (b < c)

stmtl ;
else

stmt2;

To get the same functionality, you would have to write

if (a < b)

if (b < c)

stmtl;
else

stmt2;
else

stmt2;

www.manaraa.com

Operators and Expressions 143

In situations that don't involve an else, you can use either fonn. Given that you
can write the expression either way, which should you use? The relational
expression is more maintainable because it is easy to add else clauses at a later
date. In tenns of readability, the two versions are about the same. The relational
expression version is easier to read because it groups all the necessary conditions
together. It also avoids some of the readability problems associated with deeply
nested if statements. On the other hand, relational expressions can themselves be
difficult to read if they become too long.

One way to decide whether a relational expression is too complex is to employ
the so-called "telephone test." This involves reading aloud the relational expres
sion. For instance, the previous example would be read as "if a is less than band
b is less than c." If you can understand the expression as you read it, then it
passes the test and you can use it. If, on the other hand, you find yourself losing
the thread, it is probably better to break it up into nested expressions. Most
important, you should be consistent. If you like one style better than another, use
it throughout your programs. Don't switch back and forth.

5.9 Bit-Manipulation Operators

The bit-manipulation operations enable you to access specific bits within an
object and to compare the bit sequences of pairs of objects. The operands for all
the bit-manipulation operators must be integers.

Operator Symbol Form Result

right shift » x » y x shifted right y bits

left shift « x « y x shifted left y bits

bitwise AND & x & y x bitwise ANDed with y

bitwise inclusive OR I x I y x bitwise ORed with y

bitwise exclusive 1\ x A y x bitwise exclusive ORed with y
OR (XOR)

bitwise complement - -x bitwise complement of x

Table 5-15. The Bit-Manipulation Operators.

www.manaraa.com

144 Chapter 5

5.9.1 Shift Operators

The two shift operators, « and », enable you to shift the bits of an object a
specified number of places to the left or the right. The operands must have
integral type, and the automatic integral promotions are performed for each
operand. After these promotions, the right-hand operand is converted to an into
The type of the result is the type of the promoted left -hand operand.

Consider the examples in Table 5-16 (these examples assume that an int is 16
bits and that two's complement notation is used for negative numbers).

Expression Bina~Model Binary Model Result
of Left perand of Result Value

5«1 00000000 00000101 00000000 00001010 10

255» 3 00000000 11111111 00000000 00011111 31

8« 10 00000000 00001000 00100000 00000000 2 13

1 «15 00000000 00000001 10000000 00000000 _215

Table 5-16. Examples Using the Shift Operators.

Shifting to the left is equivalent to multiplying by powers of two:

x < < y is equivalent to

Shifting nonnegative integers to the right is equivalent to dividing by powers of
two:

x > > y is equivalent to

Note that as bits are moved to the right or left, the vacant bits are filled with
zeroes. This is the rule when a positive value is shifted. When a negative value
is shifted to the right, however, the vacant bits can be filled with ones or zeroes,
depending on the implementation, as shown in Table 5-17.

www.manaraa.com

Operators and Expressions 145

Expression BinarO Model Binary Model Result
of Left perand of Result Value

-5 »2 11111111 11111011 00111111 11111110 2 13 -1

-5»2 11111111 11111011 11111111 11111110 -2

Table 5-17. Shifting Negative Numbers. Some implementations fill
the vacant bits with zeroes, while others fill them with
ones.

The first version, in which vacant bits are filled with zeroes, is called a logical
shift. The second version is called an arithmetic shift because it retains the
arithmetic value. The ANSI Standard does not specify whether a compiler
should perform a logical or arithmetic shift for signed objects. If the left operand
is unsigned, however, the compiler must perform a logical shift. For example,

(unsigned) -5 » 2

always results in 2!#-i on a machine where ints are 16 bits long. Use the
(unsigned) cast for portability. Also, make sure that the right operand is not
larger than the size of the object. For example, the following produces unpre
dictable and nonportable results because most ints have fewer than 50 bits:

10 » 50

You will also get unpredictable results if the shift count (the second operand) is a
negative value.

5.9.2 Logical Bitwise Operators

The logical bitwise operators are similar to the Boolean operators, except that
they operate on every bit in the operand(s). For instance, the bitwise AND
operator (&) compares each bit of the left operand to the corresponding bit in the
right operand. If both bits are one, a one is placed at that bit position in the
result. Otherwise, a zero is placed at that bit position.

When constants are used in expressions with bitwise operators, they are usually
written in hexadecimal notation to make it easier to see the value of each bit.
Each digit in a hexadecimal number represents four bits. By memorizing the
sixteen possible combinations (see Table 5-18), you can quickly convert from
binary to hexadecimal and vice versa.

www.manaraa.com

146 Chapter 5

Decimal Hex Binary Octal
0 0 0000 0
1 1 0001 1
2 2 0010 2
3 3 0011 3
4 4 0100 4
5 5 0101 5
6 6 0110 6
7 7 0111 7
8 8 1000 10
9 9 1001 11
10 A 1010 12
11 B 1011 13
12 C 1100 14
13 D 1101 15
14 E 1110 16
15 F 1111 17

Table 5-18. Decimal, Hexadecimal, Binary, and Octal Versions of the
Integers 0 Through 15.

Table 5-19 shows some examples of the bitwise AND operator.

Expression Hexadecimal Binary Representation
Value

9430 Ox24D6 00100100 11010110
5722 Ox165A 00010110 01011010

9430 & 5722 Ox0452 00000100 01010010

Table 5-19. The Bitwise AND Operator.

The bitwise inclusive OR operator (I) places a 1 in the resulting value's bit
position if either operand has a bit set at the position (see Table 5-20).

Expression Hexadecimal
Value

Binary Representation

9430 Ox24D6 00100100 11010110
5722 Ox165A 00010110 01011010

943015722 Ox36DE 00110110 11011110

Table 5-20. Examples Using the Bitwise Inclusive OR Operator.

www.manaraa.com

Operators and Expressions 147

The bitwise EXCLUSIVE OR (XOR) operator (1\) sets a bit in the resulting
value's bit position if either operand (but not both) has a bit set at the position
(see Table 5-21).

Expression Hexadecimal
Value

Binary Representation

9430 Ox24D6 00100100 11010110
5722 Ox165A 00010110 01011010

9430 A 5722 Ox328C 00110010 10001100

Table 5-21. Example Using the XOR Operator.

The bitwise complement operator (-) reverses each bit in the operand (see Table
5-22).

Expression Hexadecimal Binary Representation
Value

9430 Ox24d6 00100100 11010110
-9430 Oxdb29 11011011 00101001

Table 5-22. Example Using the Bitwise Complement Operator.

The bit-manipulation operators are frequently used to implement a programming
technique called masking, which allows you to access a specific bit or a group of
bits. This is particularly useful for compressing information. Suppose, for
instance, that you have a test consisting of 32 yes/no questions. Since each
question has only two possible answers, you can store the answer to each in a
single bit. The answers for the entire test can be stored in a 32-bit int, as shown
in the following code.

www.manaraa.com

148

#include <stdio.h>

long get answers()
{

long answers = 0;
int j;
char c;

for (j=O; j <= 31; j++)
{

scanf("%c", &c);
if (c == 'y' 1 1 c ' Y')

answers 1= 1 « j;

Chapter 5

printf("Answers entered
return answers;

(%lx)", answers);

Note particularly how the correct bit is set for each yes answer. With each
iteration through the for loop, j is incremented, so the expression

1 « j

moves the set bit one position to the left:

Value of j Value of 1 «j

0 00000000 00000000 00000000 00000001
1 00000000 00000000 00000000 00000010
2 00000000 00000000 00000000 00000100
3 00000000 00000000 00000000 00001000
4 00000000 00000000 00000000 00010000
5 00000000 00000000 00000000 00100000

By ~Ring this expression with answer, we can set all the bits that have an
answer of 'y' or 'Y'. For example if the test answers are,

y n n n y n y y n n y n y n y y y n y n n n y n y n y n n n y y

The bit pattern of answer will be (with high-order bits on the left)

1 1 0 0 0 1 0 1 0 1 0 0 0 1 011 1 0 1 0 1 0 0 1 1 0 1 0 001

www.manaraa.com

Operators and Expressions 149

This is one general use of the bitwise OR-to set one or more bits in an object.
Having arranged the bits in answer, we need a way to compare answer to the
correct answers. This is accomplished with the exclusive OR operator:

/*

*
*

correct answers are:
nnyy ynyn nyyy yynn nnyn yyyy ynyy nyny
0011 1010 0111 1100 0010 1111 1011 0101

*/

#define CORRECT ANSWERS Ox3A7C2FB5

double grade_test (answers)
long int answers;
{

extern int count_bits();
long wrong_bits;
double grade;

wrong_bits = answers A CORRECT ANSWERS;
grade = 100 * ((32 - count bits(wrong_bits)) /

32.0) ;
return grade;

The XOR operator compares answers to CORRECT_ANSWERS and sets a bit in
wrong_bits only when the operands differ. Hence, wrong_bits has bits set for
each wrong answer. To obtain the grade, we subtract the number of wrong
answers from the total to get the number of right answers. Then we divide the
number of right answers into the total. Finally, we multiply by 100. If there
were ten wrong answers, for example, the expression would be

100 * ((32.0 - 10) / 32.0)

which reduces to

100 * (22.0 / 32.0)

for a grade of 69.

We still need to write a count _ bits() function that counts the number of bits set in
wrong_answers. This function is similar to get _ answers(), but instead of using
the OR operator to set bits, we use the AND operator to read bits.

www.manaraa.com

150

int count_bits (long_num
long int long_num;
{

int j, count = 0;

for (j = 0; j <= 31; j++)
if (long_num & (1 « j))

++count;
return count;

Chapter 5

Now we can invoke all of these functions from a main() function to fonn an
executable program:

#include <stdio.h>

main()
{

II.

extern double grade_test();
extern long int get_answers();
double grade;

printf("Enter the answers:\n");
grade = grade_test (get_answers());
printf("The grade is %3.0f\n", grade);
exit (0);

Note that the argument to grade_test() is itself a function. It is functionally the
same as

temp = get_answers();
grade = grade_test (temp);

but in the nested version, we do not need to declare a temporary variable temp.
This makes the function somewhat cleaner and more efficient.

The fonnat specifier %3.Of directs printf() to output at least three digits of the
value, but to round the decimal digits.

If this program is called grade, typical execution, with three incorrect answers,
would look like the following:

$ grade
Enter the answers:
ynynyynyyyyynynynnyyyyynnynnyyny
The grade is 91

A major drawback of this program is that it works only when there are exactly
32 questions and answers. We leave it as an exercise to modify the program so

www.manaraa.com

lrs and Expressions 151

mat it works for any number of questions, where the number of questions and
answers is entered by the user. (For more than 32 questions, you need to use an
array, described in the next chapter.)

5.10 Bitwise Assignment Operators

Operator Symbol Form Operation

right-shift-assign »= a »= b Assign a»b to a.
left-shift-assign «= a «= b Assign a«b to a.
AND-assign &= a &= b Assign a&b to a.
OR-assign 1= a 1= b Assign alb to a.

XOR-assign J\= a A= b Assign a"b to a.

Table 5-23. The Bitwise Assignment Operators.

The bitwise assignment operators are analogous to the arithmetic assignment
operators. For example, the assignment

x = x « 2;

can be written

x «= 2;

5.11 Cast Operator

Operator Symbol Form Operation

cast (type) (type) e Convert e to type.

Table 5-24. The Cast Operator.

We introduced the cast operator in Chapter 3. It enables you to convert a value
to a different type. One of the uses of casts, as we remarked in Chapter 3, is to
promote an integer to a floating-point number to ensure that the result of a
division operation is not truncated, as illustrated in the following example:

/* Result is 1 because fractional part is truncated
*/

3/2

/* Result is 1.5 because the 3 is converted to a
* float
*/

(float) 3 / 2

www.manaraa.com

152 Chapter 5

Note that the cast operator has very high precedence, so the preceding expression
is parsed as if it had been written

((float) 3) I 2

Another use of the cast operator is to convert function arguments. Suppose you
want to write a program that prints the powers of 2 up to 231. The runtime
library function pow() will do the trick, but it expects its arguments to be of type
double. If your variables are integers, you need to cast them to double before
you pass them as arguments, as shown in the following example.

#include <stdio.h>
#include <math.h>

main()
{

int j;
long k;

for (j = 0; j < 32; j++)
{

k = (int) pow(2.0 , (double) j);
printf("%4d\t\t%13lu\n", j, k);

exit (0);

If we pass j without casting it to double, the program will fail. The pow()
function is expecting a double object and interprets whatever object is passed as
if it were a double. If the object being passed is actually an int, you will get
unpredictable results. (The ANSI Standard supports a new syntax for declaring
the types of arguments that makes this sort of cast unnecessary. This syntax,
called prototyping, is described in Chapter 9.)

The value returned by pow() is a double, so we cast it to int before assigning it
to j. This cast is actually unnecessary since the compiler automatically converts
right-hand expressions of an assignment. Nevertheless, the explicit cast serves
an important documentation function by emphasizing that a conversion is taking
place. We discuss argument-passing conventions in more detail in Chapter 9.

The most frequent and important uses of casts involve pointers and data initial
ization. We cover both of these topics in later chapters.

www.manaraa.com

Operators and Expressions 153

5.12 sizeof operator

Operator Symbol Form Operation

sizeof slzeof sizeof(t) Return the size, in bytes, of
or data type t or expression x.

sizeof x

Table 5-25. The sizeof Operator.

The sizeof operator accepts two types of operands: an expression or a data type.
However, the expression may not have type function or void or be a bit field
(described in Chapter 8). Moreover, the expression itself is not evaluated-the
compiler determines only what type the result would be. Any side effects in the
expression, therefore, will not have an effect. The result type of the sizeof
operator is either int, long, unsigned int, or unsigned long, depending on your
compiler. The ANSI Standard requires it to be unsigned.

If the operand is an expression, sizeof returns the number of bytes that the result
occupies in memory:

/* Returns the size of an int (4 if ints are four
* bytes long)
*/

sizeof(3 + 5)

/* Returns the size of a double (8 if doubles are
* eight bytes long)
*/

sizeof(3.0 + 5)

For expressions, the parentheses are optional, so the following is legal:

sizeof x

By convention, however, the parentheses are usually included.

The operand can also be a data type, in which case the result is the length in
bytes of objects of that type:

sizeof(char) /* 1 on all machines */
sizeof(short) /* 2 on our machine */
sizeof(float) /* 4 on our machine */
sizeof(int *) /* size of a pointer to an integer

* (4 bytes on our machines) */

The parentheses are required if the operand is a data type. Note that the results
of most sizeof expressions are implementation dependent. The only result that is
guaranteed is the size of a char, which is always 1.

www.manaraa.com

154 Chapter 5

In general, the sizeof operator is used to find the size of aggregate data objects
such as arrays and structures. This use of sizeof is discussed in Chapters 6 and 8.

You can also use the sizeof operator to obtain information about the sizes of
objects in your C environment. The following, for example, prints the sizes of
the basic data types:

#include <stdio.h>

main()
{

printf("TYFE\t\tSIZE\n\n");
printf("char\t\t%d\n", sizeof(char));
printf("short\t\t%d\n", sizeof(short));
printf("int\t\t%d\n", sizeof(int));
printf("float\t\t%d\n", sizeof(float));
printf("double\t\t%d\n" sizeof(double));
exit (0);

5.13 Conditional Operator (1 :)

Operator Symbol Form Operation

conditional 1: a ? b : c if a is nonzero result is b;
otherwise result is c.

Table 5-26. The Conditional Operator.

The conditional operator is the only ternary (three operands) operator. The
conditional operator is really just a shorthand for a common type of if ••• else
branch. The if ••• else expression

if (x < y)
z = x;

else
z = y;

can be written

z = ((x < y) ? x : y);

The first operand is the test condition. It must have scalar type. The second and
third operands represent the final value of the expression. Only one of them is

www.manaraa.com

Operators and Expressions 155

selected, depending on the value of the first operand. The second and third
operands can be of any data type, so long as the two types are compatible
according to the normal conversion rules. For example, if the second operand is
an int and the third is a double, the result type is double regardless of which one
is selected (i.e., if the int is selected, it is converted to a double).

The conditional operator is difficult to read and should be used with care. In
certain situations, however, it is handy. For example, in the following statement,
we print j if j is greater than zero; otherwise we print k:

printf("Here is %d", j > 0 ? j : k);

Without the conditional operator, this would have to be written

if (j > 0)
printf("Here is %d" , j) ;

else
printf ("Here is %d", k) ;

We need to duplicate the print statement, which leads to redundant code. The
version using the conditional operator, therefore, is better in this case.

5.14 Memory Operators
There are several operators that enable you to access and dereference memory
locations. We introduced some of them in Chapter 3, and we list them all in this
chapter (Table 5-27) for completeness, but we defer discussing them in detail
until Chapters 6 and 8.

Operator Symbol Form Operation

address of & &x Get the address of x.
dereference * *a Get the value of the object

stored at address a.
array elements [] x[5J Get the value of array

elementS.
dot x.y Get the value of member y

In structure x.
right-arrow ! p -> Y Get the value of member y

in the structure pointed to
byp.

Table 5-27. The Memory Operators.

www.manaraa.com

156 Chapter 5

Exercises
1. Enclose the following expressions in parentheses the way a C compiler

would evaluate them. (Hint: use Table 5-1).

a) a = b * c == 2;
b) a=f(x)&&a> 100;
c) a==b&&x !=y;
d) a = b += 2 + f(2);
e) a = s . f + x . y;
f) a = b » 2 + 4;
g) a = b && a > z ? x = y : z;
h) a = * ++ * p;
i) a = b 1\ C & d;

2. Suppose that you want to build a 4-byte long int out of four calls to a
routine called getbyte() which returns a I-byte value. Write a single
expression that represents such an integer, given that the first call to
getbyte() gets the high-order byte and the next calls get subsequently
lower-order bytes. Is your expression portable? If not, is it possible to
make it portable?

3. What is the output of the following program?

main()
{

short i = 0;
printf ("%d\n", (i + 1) * (i
exit (0);

Is this program portable? Explain.

1));

4. Which of the following printf() calls give a unique portable result?

main()
{

printf("%x\n", -0 » 1);
printf ("%x\n", (unsigned) -0 » 1);
printf ("%x\n", (long) 1 « 32);
exit (0);

www.manaraa.com

Operators and Expressions 157

5. Write a function called circular _shift(a, n), which takes a, which is an
unsigned long int, and shifts it left n positions, where the high-order
bits are reintroduced as low-order bits. For example if the binary
representation of a is

00010110 00111010 01110010 11100101

then the call

circular shift(a, 5)

should return a long int whose binary representation is

11000111 01001110 01011100 10100010

6. Using shift operators, detennine the largest int value that your comput
er can represent.

7. Write a function that accepts an int and prints its binary representation.
(Hint: use the sizeof operator to ensure that your function works no
matter how big an int is.)

8. Write a function that reads a number in binary fonn and converts it to
hexadecimal fonn.

9. Which of the following expressions are not portable? Why?

a) x++ * ++y
b) x = ++y - x++
c) x++ / (y - y)
d) -3/x * y
e) y = (unsigned) x » 4
f) Y = x » 4
g) Y »= x
h) foo(j++, j++)

10. Write a function called pack() that accepts four chars and packs them
into a long int. The function definition should be

long int pack(a, b, c, d
char a, b, c, d;

11. Modify the breakline() function so that it does not print a newline in the
middle of a word.

12. Modify the grade program so that it works with any number of ques
tions and answers less than or equal to 32. Have the user input the
number of answers.

www.manaraa.com

Chapter 6

Arrays and Pointers

"Curiouser and curiouserf" said Alice. - Lewis Carroll,
Alice in Wonderland

We have already introduced pointers as one of the scalar data types. In this
chapter, we examine them more closely and introduce an aggregate type called
an array. Arrays and pointers are closely related in C. Together, they represent
some of the most powerful features of the C language and probably account, as
much as anything, for C's popularity.

In C, an array is a collection of identically typed variables stored contiguously
in memory.

Each variable in an array is called an element and can be accessed by giving the
array name plus an index expression called a subscript. A subscript value of 0
identifies the initial element, a value of 1 identifies the next element, and so
forth.

The most basic purpose of arrays is to store large amounts of related data that
share the same data type. Suppose that you want to analyze the temperature
fluctuations over the course of a year. To write such a program, you first need to
store the average temperature for each day. This requires 365 memory locations.
Obviously, it would be extremely tiresome to declare 365 variables, each with a
unique name. Arrays provide a solution to this problem.

www.manaraa.com

Arrays and Pointers 159

6.1 Declari ng an Array
You declare an array by placing a pair of brackets after the array name. To
specify the size of an array, enter the number of elements within the brackets.
Figure 6-1 shows the syntax of an array declaration, where array size is an
integer expression. Array initializers are described in Section 6.3.

Figure 6-1. Syntax of an Array Declaration.

For the array to hold temperatures, you can write

int daily_temp[365];

This creates an array called daily _temp with 365 integer elements. You can then
enter the temperatures of each day with assignment statements, such as

daily_temp [0] 38;
daily_temp [1] 43;
daily_temp [2] 27;

The objects on the left side of the assignment expressions are called array
element references since they reference a single array element. Note that sub
scripts begin at 0, not 1. The highest legal subscript, therefore, is always one
less than the array's size. For the daily _temp{} array, the last element is dai
ly_temp[364].

Because subscripts begin with zero, it is confusing to identify members with
words such as "first," "second," and "third." Does the "third" element refer to
the element with subscript 3 or subscript 2? To avoid this confusion, we always
refer to elements by their subscript number. Also, the element with subscript ° is
referred to as the initial element.

It may seem confusing to have arrays begin at ° instead of 1, but it reflects C's
philosophy of staying close to the computer architecture. Zero is a much more
natural starting point for computers, even though it may be a bit more inconve-

www.manaraa.com

160 Chapter 6

nient for people. In other languages, such as FORTRAN 77, arrays begin with
subscript 1. While the FORTRAN method may be more intuitive, it is often
more costly because the compiler must subtract 1 from each subscript reference
to get the true internal address of an element. The C method can produce more
efficient code. Also, as you will see later in this chapter, the C method makes it
very easy to access array elements through pointers.

It is important to keep in mind the difference between an array declaration and
an array element reference. Though they look the same, they have different
functions. In a declaration, the subscript defines the size of the array. In an
array element reference, the subscript determines which element of the array is
to be accessed. For instance,

/*

*
This is a declaration -- the 4 specifies the
number of elements in the array.

*/
int ar [4] ;

/*

*
This is an array element reference -- the 2
specifies the particular element to access.

*/
ar [2] = 0;

Returning to our daily temperature example, suppose we want to write a program
that gives us the average temperature for the year. To simplify the problem, let
us assume that you have already assigned temperature values for every element
in the array. The program could be written as follows:

#include <stdio.h>
#define DAYS IN YEAR 365

main ()
{

int j, sum=O;
int daily_temp[DAYS IN_YEAR];

/* Assign values to daily_temp[] here. */

for (j=O; j < DAYS_IN_YEAR; ++j)
sum += daily_temp[j];

printf("The average temperature for the year is\
%d.\n", sum/DAYS IN YEAR);

exit (0);

www.manaraa.com

Arrays and Pointers 161

The variable j is used to subscript the array. After fetching an element and
adding it to sum, the function increments j so that the next element can be
accessed. When all 365 elements have been summed, the for loop ends and the
printf() function outputs the average.

6.2 How Arrays Are Stored in Memory

To see how arrays are stored in memory, consider the array ar, which is declared
and assigned values by the following statements:

int ar[5]; / * declaration * /
arlO] 15;
ar[l] = 17;
ar [3] = ar [0] + ar [1] ;

The storage for this array is shown in Figure 6-2. We show the array starting at
address 1000, but it could start anywhere in memory. The actual number of
bytes allocated for each element depends on how large an iot is on your comput
er. Our machine allocates four bytes for an iot.

Element

ar[O]

ar[1]

ar[2]

ar[3]

ar[4]

Address
(in hex)

OFFC

1000

1004

1008

100C

1010

1014

Memory

Contents

+--- 4 bytes

./

15

17

undefined

32

undefined

Figure 6-2. Storage of an Array.

,
V

V

V

V

V

V

~

www.manaraa.com

162 Chapter 6

Note that ar[2] and ar[4] have undefined values. This means that their values
are unpredictable. The contents of these memory locations are whatever is left
over from the previous program execution. In the programming world, unde
fined values are often called "garbage" or "trash," and they produce some of the
most pesky bugs because they can cause different results each time the program
is executed. They may have hannless values, such as zero, most of the time; yet
in rare circumstances, they may acquire hannful values that cause the program to
fail. Frequently, these bugs are not noticed until after the product has been
shipped to customers and the hannful values tum up at a customer site. To avoid
this type of bug, you can initialize arrays, as described in the next section.

You can find the size in bytes of an array by using the sizeof operator. For
example, the expression

sizeof(ar)

evaluates to 20 because the array consists of five 4-byte ints. Note that you use
the array name without a subscript reference to get the size of the entire array. If
you include a subscript, you get the size of a single element. For example,

sizeof(ar[O])

evaluates to 4.

6.3 Initializing Arrays
To initialize an array prior to the ANSI Standard, you had to declare the array
outside a function or precede the array declaration with the static keyword (see
Box 6-1). Both of these methods give the array a quality called fixed duration,
which is discussed in Chapter 7.

By default, arrays with fixed duration have all of their elements initialized to
zero. You can assign different initial values by enclosing specific values in
braces following the array declaration. The values must be constant expressions
that can be automatically converted to the array type. For example,

static int a_ar[5];
static int b_ar[5]={1, 2, 3.5, 4, 5};

results in the storage patterns shown in Figure 6-3. Note that the floating-point
3.5 is converted to the integer value 3.

It is incorrect to enter more initialization values than there are elements in the
array; the compiler should report an error when you try. If you enter fewer
initialization values than elements, the remaining elements are initialized to zero.
The declaration

static int c_ar[5]={1,2,3};

www.manaraa.com

Arrays and Pointers

results in the following initial values:

c_ar[OJ 1
c_ar[lJ 2
c_ar[2J 3
c_ar[3J 0
c_ar[4J 0

Element

a_arlO]

a_ar[1]

a_ar[2]

a_ar[3]

a_ar[4]

b_ar[O]

b_ar[1]

b_ar[2]

b_ar[3]

b_ar[4]

Address
(in hex)

OFFC

1000

1004

1008

100C

1010

1014

1018

101C

1020

1024

1028

Memory

./

Contents
+- 4 bytes ~

0

0

0

0

0

1

2

3

4

5

Figure 6-3. Initialization of Arrays.

163

J

J

J

/

/

/

J

J

I

I

I

I

www.manaraa.com

164 Chapter 6

When you enter initial values, you may omit the array size-the compiler auto
matically figures out how many elements are in the array based on how many
initial values are present. For instance,

static char d_ar[]={'a' , 'b' , 'c' , 'd'};

creates a four-element array of chars with initial values:

d_ar[O] , a'

d_ar[l] , b'

d_ar[2] , c'

d_ar[3] , d'

Box 6-1: ANSI Feature -Initialization of Arrays

Most older C compilers require an array to have fixed duration to be
initiaJjzed. This means that the declaration mu t occur out ide a function
or be preced d by the static keyword. The ANSI Standard, however,
permit automatic arrays to be initialized a well. Automatic variable ,
de cribed in detail in Chapter 7, are variables declared within a function
and without the static keyword.

The rule for initializing automatic arrays are imilar to the rules for
ini tializing fixed arrays. As with fixed arrays, the uninitialized element
in an automatic array are initialized to zero. However, if no initializer is
present, none of the elements receive a default initial value (a i the case
with the old emantic). The initialization values must be con tant ex
pre ion.

Because this feature i not supported by many compilers, our examples
are confined to the old yntax. If your compiler upports initialization of
dynamic arrays, however, you hould u e them where applicable ince
they can produce more efficient code. The next chapter de cribes the
difference between fixed and dynamic variable in greater detail.

www.manaraa.com

Arrays and Pointers

6.4 Array Example: Encryption and
Decryption

165

Because computers are used to store all sorts of private information, a great deal
of effort goes into making them secure against intruders. On large computer
systems, every file has a protection status that controls who can access the file
and what they can do to it. Users, and sometimes groups of users, have pass
words that they must enter to log onto a computer. These measures provide
various levels of protection, but none of them give total security.

A more robust security technique is to encode files. Every character is translated
into a code character so that the file looks like gibberish to someone who doesn't
know the code. The following program illustrates a simple encoding function
that uses an array.

1* Return a coded value for a character

*1
#define ILLEGAL VAL -1

char encode(ch)
char ch;

static unsigned char encoder[128] = { 127, 124,
121, 118, 115,112, 109, 106,103, 100" 97, 94, 91,

88, 85, 82, 79, 76, 73, 70, 67, 64, 61, 58, 55,
52, 49, 46, 43, 40, 37, 34, 31, 28, 25, 22, 19,
16, 13,10, 7, 4, 1, 126, 123, 120, 117, 114, 111,

108, 105, 102, 99, 96, 93, 90, 87, 84, 81, 78, 75,
72, 69, 66, 63, 60, 57, 54, 51, 48, 45, 42, 39,
36, 33, 30, 27, 24, 21, 18, 15, 12, 9, 6, 3, 125,

122, 119, 116, 113, 110, 107, 104, 101, 98, 95, 92,
89, 86, 83, 80, 77, 74, 71, 68, 65, 62, 59, 56,
53, 50, 47, 44, 41, 38, 35, 32, 29, 26, 23, 20,
17,14,11,8,5,2, °

} ;

1* Test for illegal character. *1
if (ch > 127)

return ILLEGAL_VAL;
else

return encoder[ch]; 1* Return coded character.*1

First we set up a 128-element array initialized with random numbers from 0
through 127. Each element must have a unique value. Our array initialization
actually follows a simple pattern, but ideally the pattern should be harder to
perceive. Real encoders use an algorithm to create the translation array. The

www.manaraa.com

166 Chapter 6

more complex the algorithm, the more difficult it is for would-be spies to break
the code.

After initializing the array, we test the input argument to make sure that it is a
legal character (remember that unsigned char objects have a range of 0 through
255). If ch is greater than 127, it is not a printable character so we return -1 to
signify an input error. If ch is less than or equal to 127, we use it as a subscript
expression and return the element referenced by that subscript. For every value
of ch from 0 through 127, there is a unique translation code. If ch equals 0, for
instance, the function returns 127; if ch equals 1, the function returns 124. To
see how it works, consider the following program that invokes encode().

#include <stdio.h>

main()
{

char c[5];
int i;

c[O] encode('W');
c[l] encode('h');
c[2] encode('a');
c[3] encode('t');
c [4] encode (, ?') ;

for (i=O; i<5; ++i)
printf("%d\t", c[i]);

exit (0);

If your computer uses the ASCII representation of characters, program execution
results in the following:

w D y B

The phrase "What?" is coded as "wDY B" (the space between Y and B is an
unprintable character). If your computer uses some other form of character
representation, such as EBCDIC, the program will still work, but it will print
different characters. Anyone trying to read a file that contains these encoded
characters will be very confused, to say the least. Of course, authorized readers
need a decoder that has a reverse translation table to translate the file back to its
original form.

www.manaraa.com

Arrays and Pointers 167

6.5 Pointer Arithmetic
The C language allows you to add and subtract integers to and from pointers. If
p is a pointer, the expression

p+3

is perfectly legal, meaning three objects after the object that p points to. Since p
holds an address, performing arithmetic on p generates a new address value.
However, rather than simply adding 3 to p, the compiler multiplies the 3 by the
size of the object that p points to. This is called scaling.

Suppose, for example, that the address value held by p is 1000. If p is declared
as a pointer to a 4-byte long int, the 3 in p+3 is multiplied by 4. The value of
p+3, therefore, is 1012. On the other hand, if p is declared as a pointer to a
char, p+3 would equal 1003. In this way, the expression p+3 always means 3
objects after p, regardless of the type of object that p points to.

6.5.1 Pointer Subtraction
It is legal to subtract one pointer value from another, provided that the pointers
point to the same type of object. This operation yields an integral value that
represents the number of objects between the two pointers. If the first pointer
represents a lower address than the second pointer, the result is negative. For
example,

&a[3] - &a[O]

evaluates to 3, but

&a [0] - &a [3]

evaluates to -3.

It is also legal to subtract an integral value from a pointer value. This type of
expression yields a pointer value. The following examples illustrate some legal
and illegal pointer expressions:

long *pl, *p2;
int j;
char *p3;

p2 = pI + 4;
j = p2 - pI;
j = pI - p2;
pI = p2 - 2;
p3 = pI - 1;
j = pI - p3;

/* legal */
/* legal j is assigned 4 */
/* legal J 1S assigned -4 */
/* legal compatible pointer types */
/* ILLEGAL different pointer types*/
/* ILLEGAL -- different pointer types*/

www.manaraa.com

168 Chapter 6

6.5.2 Null Pointer

The C language supports the notion of a null pointer-that is, a pointer that is
guaranteed not to point to a valid object. A null pointer is any pointer assigned
the integral value zero. For example,

char *p;

p = 0; /* make p a null pointer */

In this one case-assignment of zero--you do not need to cast the integral
expression to the pointer type.

Null pointers are particularly useful in control-flow statements since the
zero-valued pointer evaluates to false, whereas all other pointer values evaluate
to true. For example, the following while loop continues iterating until p is a
null pointer:

char *p;

while (p)

/* iterate until p is a null pointer */

This use of null pointers is particularly prevalent in applications that use arrays
of pointers, as described later in this chapter.

6.6 Passing Pointers as Function
Arguments

As we mentioned in Chapter 3, the compiler complains if you try to mix differ
ent types of pointers. The one exception to this rule occurs when you pass
pointers as arguments. In the absence of function prototyping (described in
Chapter 9), the compiler does not check to make sure that the type of the actual
argument is the same as the type of the formal argument. If the types are
different, strange behavior can result. The following program shows what can
happen if you pass a pointer to one type but declare it as a pointer to a different
type on the receiving side.

www.manaraa.com

Arrays and Pointers

#include <stdio.h>

void clr(p)
long *p;
{

p = 0; / Store a zero at location p. */

main()
{

static short s[3] = {1, 2, 3};

clr(&s[l]); /* Clear element 1 of s[]. */
printf("s[0]=%d\ns[1]=%d\ns[2]=%d\n", s[O],

s[l], s[2]);
exit (0);

169

First we assign the values 1,2, and 3 to s[OJ, s[lJ, and s[2J, respectively. Then
we send the address of element 1 to the clr() function, which sets the element
equal to O. The values of s[OJ, s[lJ, and s[2J should now be 1,0, and 3. The
output, however, is

s[O]=l
s[l]=O
s[2]=0

The problem is that the pointer p in the clr() function is declared as a pointer to a
long integer. When zero gets assigned to the address of p, four bytes are zeroed.
s[lJ, which is a short integer, is only two bytes long, so two extra bytes get
cleared. Because arrays are stored contiguously in memory, the two extra bytes
are the ones allocated for s[2J. Figure 6-4 shows what transpires. It is worth
taking some time to understand this example since it illustrates an important
concept in the C language.

www.manaraa.com

170

Before *p = 0: Memory

Variable Address Contents

{ 1000
5[0]

1001

00

01

{ 1002
5[1]

1003

00

02

{ 1004
5[2]

1005

00

03

2000 00

2001 00
P 2002 10

2003 02

After *p = 0:

{ 1000
5[0]

1001

00

01

{ 1002
5[1]

1003

00

00

{ 1004
5[2]

1005

00

00

2000 00

2001 00
P 2002 10

2003 02

.......

....-I+-

../

./

I---

....-

./ I+-

....-
:/'

-

....-

Chapter 6

' p is four
bytes long

*p is four
bytes long

Figure 6-4. Passing the Wrong Pointer Type. Because p points to
a long int, four bytes are set to zero.

www.manaraa.com

Arrays and Pointers

6.7 Accessing Array Elements
Through Pointers

171

One way to access array elements is to enter the array name followed by a
subscript. Another way is through pointers. The declarations

short ar[4];
short *p;

create an array of four variables of type short, called arlO], ar[l] , arI2], and
arI3], and a variable named p that is a pointer to a short. Using the "address of"
operator (&), you can now make the assignment,

p = &ar[O];

which assigns the address of array element 0 to p. If we dereference p,

*p

we get the value of element arlO].

Until the value of p is changed, the expressions arlO] and *p refer to the same
memory location. Due to the scaled nature of pointer arithmetic, the expression

*(p+3)

refers to the same memory contents as

ar[3]

In fact, for any integer expression e,

* (p+e)

is the same as

ar[e]

This brings us to the first important relationship between arrays and pointers:
Adding an integer to a pointer that points to the beginning of an array, and then
dereferencing that expression, is the same as using the imeger as a subscript
value to the array.

The second important relationship is that an array name that is not followed by a
subscript is interpreted as a pointer to the initial element of the array. That is, the
expressions

ar

and

&ar[O]

www.manaraa.com

172 Chapter 6

are exactly the same. Combining these two relationships, we arrive at the
following important equivalence:

ar[n] is the same as *(ar + n)

This relationship is unique to the C language and is one of C's most important
features. When the C compiler sees an array name, it translates it into a pointer
to the initial element of the array. Then the compiler interprets the subscript as
an offset from the base address position. For example, the compiler interprets
the expression ar[2] as a pointer to the first element of ar, plus an offset of 2
elements. Due to scaling, the offset determines how many elements to skip, so
an offset of 2 means skip two elements. The two expressions

ar[2]
* (ar+2)

are equivalent. In both cases, ar is a pointer to the initial element of the array
and 2 is an offset that tells the compiler to add two to the pointer value.

Because of this interrelationship, pointer variables and array names can be used
interchangeably to reference array elements. It is important to remember, how
ever, that the values of pointer variables can be changed whereas array names
cannot be changed. This is because an array name by itself is not a variable-it
refers to the address of the array variable. You cannot change the address of
variables. This means that a naked array name (one without a subscript or
indirection operator) cannot appear on the left-hand side of an assignment state
ment. For instance,

float ar[5] , *p;

p = ar; /* legal -- same as p= &ar[O] */
ar p; /* illegal you may not assign */

/* to an array address */
&p ar; /* illegal you may not assign */

/* to a pointer address */
ar++; /* illegal -- you may not */

/* increment an array address */
ar[l] *(p+3); /* legal ar[l] is a variable */
p++; /* legal -- you may increment a */

/* pointer variable */

This difference between pointers and arrays is an important distinction to grasp.
We encounter this distinction again when we describe character strings later in
this chapter. In the above examples, note that scaling allows you to use the
increment and decrement operators to point to the next or previous element of an
array.

www.manaraa.com

Arrays and Pointers

6.8 Passing Arrays as Function
Arguments

173

In C, an array name that appears as a function argument is interpreted as the
address of the first element of the array. For instance,

main ()
{

extern float func();
float x, farray[5];

x = func(farray); /* Same as func(&farray[O]) */

On the receiving side, you need to declare the argument as a pointer to the initial
element of an array. There are two ways to do this:

or

func(ar)
float *ar;
{

func(ar)
float ar[];
{

The second example declares ar to be an array of indeterminate size. You may
omit the size specification because no storage is being allocated for the array.
The array has already been created in the calling routine, and what is being
passed is really a pointer to the first element of the array. Since the compiler
knows that array expressions result in pointers to the first element of the array, it
converts ar into a pointer to a float, just like the first declaration. Functionally,
therefore, the two versions are equivalent. In terms of readability, however, the
second version may be superior since it emphasizes that the object being passed
is the base address of an array. In the first version, there is no way of knowing
whether ar points to a single float or to the beginning of an array of floats.

www.manaraa.com

174 Chapter 6

It is also legal to declare the size of the array in an argument declaration:

func(ar)
float ar[6];
{

However, the compiler uses the size information only for bounds checking (if the
compiler supports this feature). (See Box 6-2 for more about bounds check
ing.) Also, you must specify all but the first dimension size of a multidimen
sional array. This is described in Section 6.10.

The choice of declaring a function argument as an array or as a pointer has no
effect on the compiler's operation (unless your compiler supports bounds check
ing)-it is purely for human readability.. (This may change in the future. See
Box 9-1 for a discussion about ANSI's future plans for array parameters.) To the
compiler, ar simply points to a float; it is not an array. Because of the point
er-array equivalence, however, you can still access ar as if it were an array. But
you cannot find out the size of the array in the calling function by using the
sizeof operator on the argument. For example,

#include <stdio.h>

main ()
{

void print_size();
float f_array[lO];

printf("The size of f array is: %d\n",
sizeof(f_array));

print_size (f_array);
exit (0);

void print size(arg)
float arg [] ;
{

printf("The size of arg is: %d\n", sizeof(arg));

On our computer, the results of running this program are

The size of f_array is: 40
The size of arg is: 4

The variable L array is an array often 4-byte floats, so the value 40 is its correct
size in bytes. The variable arg, on the other hand, is converted to a pointer to a

www.manaraa.com

Arrays and Pointers 175

float. On our machine, pointers are four bytes long, so the size of arg is 4.
Because it is impossible for the called function to deduce the size of the passed
array, it is often a good idea to pass the size of the array along with the base
address. This enables the receiving function to check array boundaries:

#define MAX SIZE 1000

void foo(f_array, f_array_size);
float f_array [] ;
int f_array_size;

if (f_array size > MAX_SIZE)
{

printf("Array too large.\n");
exit (1);

You can obtain the number of elements in an array by dividing the size of the
array by the size of each element. On the calling side, you would write

foo(f_array, sizeof(f_array)/sizeof(f_array[O]));

Note that this expression works regardless of the type of element inL array[].

6.9 Sorting Algorithms
Sorting a list of objects into alphabetical or numerical order is a common pro
gramming operation and is a classic application of arrays. Although the idea of
sorting is simple enough, it turns out that the process can be complicated. There
are numerous sorting algorithms, and the mathematical analyses for deciding
which are the most efficient are the subject of many lengthy volumes.

In this section, we show one of the simpler algorithms, called a bubble sort. The
idea behind a bubble sort is to compare adjacent elements, starting with the first
two, and interchange them if the first is larger than the second. After comparing
the first two elements, we compare the second and third, then the third and
fourth, and so on until we reach the end of the array. Comparing all the adjacent
pairs is termed a pass. If in the first pass we need to interchange any of the
pairs, we need to make another pass. We keep making passes until the array is in
sorted order.

www.manaraa.com

176 Chapter 6

Box 6·2: Bug Alert - Walking Off the End of an
Array

Unlike many programming language , C does not require compiler to
check array bounds. (A few compiler include options that let you check
anyway.) This mean that you can attempt to acce elements for which
no memory has been allocated. The results are unpredictable. Some
time you will acce memory that has been allocated for other variables.
Sometimes you will attempt to access special protected area of memory
and your program will abort. Usually thi type of error occur because
you are off by one in te ting for the end of the array. For example,
consider the following program, which attempts to initialize every ele

ment of an array to zero:

main ()
(

int ar(10) , j ;

for (j=O ; j <= 10 ; j++)
ar [j) = 0 ;

Since we have declared arfJ to hold ten element, we can validly refer to
element 0 through 9. Our for loop, however. has an off-by-one bug in it.
The loop run from 0 through 10. 0 element 10 aJ 0 gets assigned zero.
Since there is no element 10. the compiler overwrites a portion of
memory. very likely the portion of memory re erved for j. Thi will
produce an infinite loop because j will be re et to zero.

You can avoid thi type of error by keeping your function mall and
testing each one after it i written. Thi way you can catch the e bug
early before they become a major problem.

www.manaraa.com

Arrays and Pointers 177

To see exactly what is happening we have added a couple of printj() statements
that show the current status of the array before each pass.

/* Sort an array of ints in ascending order using
* the bubble sort algorithm.
*/

#define FALSE 0
#define TRUE 1
#include <stdio.h>

void bubble sort(list, list size
int list[], list size;
{

int j, k, temp, sorted
while (! sorted

FALSE;

{

sorted = TRUE; /* assume list is sorted */

/* Print loop: not part of bubble sort algorithm */
for (k = 0; k < list size; k++)

printf ("%d\t", list [k]);
printf ("\n");

/* End of print loop */

for (j = 0; j < list size -1; j++)
{

if (list[j] > list[j+l])

/* At least 1 element is out of order */
sorted = FALSE;
temp = li s t [j] ;
list[j] = list[j+l];
list[j+l] = temp;

/* end of for loop */
/* end of while loop */

The function accepts two parameters, a pointer to the first element of an array of
ints and an int representing the size of the array.

www.manaraa.com

178 Chapter 6

The following program calls bubble _sort() with a 10-element array.

main ()
{

int i;
static int list[] 13, 56, 23, 1, 89, 58,

20, 125, 86, 3};

bubble_sort (list, sizeof(list)/sizeof(list[O]));
exit (0);

Note how we pass the number of elements in the array using the sizeof operator.
This is a useful technique in C because it is portable. We can add new elements
to the array, and the size of the array elements can vary, but we never need to
change the function call. Program execution results in the following output:

13 56 23 1 89 58 20 125 86 3
13 23 1 56 58 20 89 86 3 125
13 1 23 56 20 58 86 3 89 125
1 13 23 20 56 58 3 86 89 125
1 13 20 23 56 3 58 86 89 125
1 13 20 23 3 56 58 86 89 125
1 13 20 3 23 56 58 86 89 125
1 13 3 20 23 56 58 86 89 125
1 3 13 20 23 56 58 86 89 125

The bubble sort is not very efficient, but it's a simple algorithm that illustrates
array manipulation. The standard runtime library contains a much more efficient
sorting function called qsort(). We describe how to use qsort() in Chapter 9.

6.10 Stri ngs

One of the most common uses of arrays is to store strings of characters. A string
is an array of characters terminated by a null character. A null character is a
character with a numeric value of zero. It is represented in C by the escape
sequence: '\0'. A string constant, sometimes called a string literal, is any series
of characters enclosed in double quotes. It has a data type of array of char, and
each character in the string takes up one byte. In addition, the compiler automat
ically appends a null character to designate the end of the string.

www.manaraa.com

Arrays and Pointers 179

6.10.1 Declaring and Initializing Strings

To store a string in memory, you need to declare an array of type char. You may
initialize an array of chars with a string constant. For example,

static char str[] = "some text";

The array is one element longer than the number of characters in the string to
accommodate the trailing null character. strU, therefore, is ten characters in
length. If you specify an array size, you must allocate enough characters to hold
the string. In the following example, for instance, the first four elements are
initialized with the characters 'y', 'e', 's', and '\0'. The remaining six elements
receive the default initial value of zero:

static char str[lO] = "yes";

The following statement, however, is illegal:

static char str[3] = "four"; /* illegal */

Some compilers, including those that conform to the ANSI Standard, allow you
to specify an array size that does not include the trailing null character. The
following declaration causes the compiler to allocate four characters, initialized
to 'f', '0', 'u', and 'r':

static char str[4] = "four"; /* no trailing null */

You may also initialize a char pointer with a string constant. The declaration

char *ptr = "more text";

also creates an array of characters initialized with "more text," but it is subtly
different from the preceding declaration. Both declarations allocate the same
amount of storage for the string and initialize the memory locations with the
same values, but the pointer declaration creates an additional 4-byte variable for
the pointer (see Figure 6-5).

All subsequent uses of the array name refer to the address of the array's initial
element. This address, as we said before, cannot be changed. The pointer is a
variable that is initialized with the address of the array's initial element. Howev
er, you can assign a different address value to the pointer. In this case, the
address with which it was initialized will be lost.

www.manaraa.com

180

Memory

Element Address Contents

OFFF

str[O] 1000 's'

str[1] 1001 '0'

str[2] 1002 'm'

str[3] 1003 'e'

str[4] 1004
, ,

str[5] 1005 ' ..
str[6] 1006 'e'

str[7] 1007 'x'

str[8] 1008 't'

str[9] 1009 '\0'

Chapter 6

Memory

Address Contents

100A 'm'

100B '0'

100C 'r'

100D 'e'

100E
, ,

100F 't'

1010 'e'

1011 'x'

1012 't'

1013 '\0'

ptr 2000

I+-- 4 byteSI 100A

Figure 6-5. Storage of a String.

6.10.2 String Assignments
The reason you can initialize a pointer with a string constant is that a string is
an array of chars, so C treats string constants like other arrays-it interprets a
string constant as a pointer to the first character of the string. This means that

----------------- - -

www.manaraa.com

Arrays and Pointers 181

you can assign a string constant to a pointer that points to a char. However, you
must be careful about allocating enough memory for the string, as shown below.

main()
{

}

char array[10];
char *ptr1 = "10 spaces";
char *ptr2;

array = "not OK";
array[5] = 'A';
ptr1 [5] = 'B';
ptr1 = "OK";
ptr1[5] = 'e';

*ptr2 = "not OK";
ptr2 = "OK";
exit (0);

/* cannot assign to an address */
/* OK */
/* OK */

/* questionable due to prior */
/* assignment */
/* type mismatch */

This example highlights many of the problems that beginners have with pointers,
arrays, and strings, so we'll discuss each assignment in detail.

array = "not OK";
array represents the address of the initial element of the array, so it
cannot be changed. Note, however, that the operand types agree be
cause the string "not OK" is interpreted as a pointer to the first
character, n.

array[5] = 'A';
This is a simple assignment to element 5 of the array{] array.

ptrl [5] = 'B';
ptr I is a pointer to a char that has been initialized to point to the string
"10 spaces," which exists somewhere in memory. Because of the
pointer-array equivalence, this assignment changes the value of ele
ment 5, so that ptrl now points to a string whose contents are "10
spBces." Note that this assignment does not change the value of ptrl.

ptrl = "OK";
This assignment changes the value of ptr I so that it now points to a
string "OK," which exists somewhere else in memory.

www.manaraa.com

182 Chapter 6

ptrl [5] = 'e';
Due to the prior assignment, ptr 1 points to a string whose contents are
"OK." Including the tenninating null character, this string takes up
three bytes of memory. This assignment attempts to assign a value to a
memory location 3 bytes beyond the tenninating null character in
"OK," thereby accessing memory whose contents are unknown. This
will not produce a compile-time error, but it will very likely produce a
runtime error or erroneous results.

*ptr2 = ftnot OK";
In this case, we are attempting to assign a value to the char which ptr2
points to. The string is interpreted as the address of the first character
n, so this assignment is attempting to assign an address value to a char.
According to the ANSI Standard, this is illegal - address values may
be assigned only to pointer variables. Older compilers may accept this
syntax, but they should at least issue a warning.

ptr2 = ftOK";
This assignment illustrates that you can assign a string to a char pointer
even if you have not initialized the pointer. There is no difference
between this statement and the statement

ptrl = "OK";

6.10.3 Strings vs. Chars

It is important to recognize the difference between string constants and character
constants. In the following two declarations, one byte is allocated for ch but two
bytes are allocated for the string "a" (an extra byte for the tenninating null
character), plus additional memory is allocated for the pointer ps.

char ch = 'a'; /* One byte is allocated for 'a' */

/*

*
*
*
*/

In the following declaration, two bytes are
allocated for "a", plus an implementation
defined number of bytes are allocated for
the pointer ps.

char *ps = "a";

It is legal to assign a character constant through a dereferenced pointer:

*p = 'a';

www.manaraa.com

Arrays and Pointers 183

But it is incorrect to assign a string to a dereferenced char pointer:

p = "a"; / INCORRECT */

Since a string is interpreted as a pointer to a char and a dereferenced pointer has
the type of the object that it points to, this assignment attempts to assign a
pointer value to a char variable. This is illegal. By the same token, it is legal to
assign a string to a pointer (without dereferencing it), but it is incorrect to assign
a character constant to a pointer:

p "a"; /* OK */
p 'a'; /* Illegal - p is a pointer, not a char.

*/

The last assignment attempts to assign a char value to a pointer variable. An
ANSI-conforming compiler should issue an error. Some older compilers merely
report a warning.

The crucial observation to be made is that initializations and assignments are not
symmetrical: You can write

char *p = "string";

but not

*p = "string";

Note that this is true of assignments and initializations of all data types, not just
character arrays. For instance,

float f;
float *pf = &f; /* OK */

pf = &f; / ILLEGAL */

6.10.4 Reading and Writing Strings

You can read and write strings with the printf() and scanf() functions by using
the %s format specifier. For scanf(), the data argument should be a pointer to an
array of characters that is long enough to store the input string. The input string
is terminated by any space character. After reading in the input characters,
scanf() automatically appends a null character to make it a proper string. On the
printf() side, the data argument should be a pointer to a null-terminated array of
characters. printf() outputs successive characters until it reaches a null character.
The following program reads a string from the standard input device and then
prints it out ten times.

www.manaraa.com

184

#include <stdio.h>
#define MAX CHAR 80

main ()
{

char str[MAX_CHAR];
int i;

printf{" Enter a string: ");
scanf{ "is", str);
for (i = 0; i < 10; ++i)

printf{ "%s\n", str);
exit (0);

Chapter 6

Note that we can use the array name as the data argument because a naked array
name is really a pointer to the initial element of the array. One drawback of this
program is that it can fail if the input string is more than MAX_CHAR characters.
We leave it as an exercise to the reader to remove this deficiency.

In addition to printf() and scanf(), the C runtime library contains many functions
that manipulate strings. In this section, we show some sample source code for a
few of them to illustrate some of the concepts behind arrays and pointers.

6.10.5 The String Length Function
Probably the simplest string function is strlen(), which returns the number of
characters in a string, not including the trailing null character. Using arrays,
strlen() can be written

int strlen{ str
char str[];
{

int i=O;
while (str[i])

++i;
return i;

We test each element of str, one by one, until we reach the null character. If
strli] is the null character, it will have a value of zero, making the while
condition false. Any other value of strli] makes the while condition true. Once
the null character is reached, we exit the while loop and return i, which is the last
subscript value and, conveniently, the length of the string.

www.manaraa.com

Arrays and Pointers 185

You could also write the function using a for statement instead of a while
statement:

int strlen(str)
char str[];
{

int i;
for (i=O; str[i]; ++i)

/* null statement in for body */
return i;

The pointer version of strlenO would be

int strlen(str)
char *str;

int i;

for (i = 0; *str++; i++)
/* null statement */

return i;

The expression

*str++

illustrates a common idiom in C. Since the ++ operator has the same precedence
as the * operator, associativity rules take effect. Both operators bind from right
to left, so the expression causes the compiler to

1. Evaluate the post-increment (++) operator. Because ++ is apost-incre
ment operator, the compiler passes str to the next operator but makes a
note to increment str after the entire expression is complete.

2. Evaluate the indirection (*) operator, applied to str.

3. Complete the expression by incrementing str.

www.manaraa.com

186 Chapter 6

Box 6-3: ANSI Feature - String Concatenation

The A SI Standard state that two adjacent string literals will be con
catenated into a single null-tenninated string. For example, the statement

printf(" one . . " " two ... " " three\n ") ;

is treated a if it had been written

printf(" one .. two .. . three\n ");

Note that the terminating null characters of the tring(s) are not included
in the concatenated tring. Thi feature i particularly useful with regard
to macros that expand to tring literal ,a de cribed in Chapter LO. String
concatenation can al 0 be u ed to break up long tring that would other
wi e require the continuation character. For example, the tatement

printf(" This is a very long string that\
cannot fit on one line\n") ;

can be written

printf (" This is a very long string that "
" cannot fit on one line\n ");

A thi example illustrate, tring concatenation (combined with the fact
that the compiler ignores the pace between token) give you greater
fonnatting flexibility.

6.10.6 String Copy Function

The following function, called strcpy(), copies a string from one array to another.

void strcpy(sl, s2)
char sl[], s2[];

int i;

for (i=O; sl [i]; ++i)
s2[i] sl[i];

s2 [++i] = '\0';

www.manaraa.com

Arrays and Pointers 187

Note that we need to explicitly append a null character because the loop ends
before the tenninating null character is copied. Note also that we must use the
prefix increment operator in the expression

s2[++i]

We can rewrite this function using pointers as follows:

void strcpy (sl, s2)

char *sl, *s2;
{

int i;

for (i=O; *(s1+i); ++i)
* (s2+i) = * (sl+i);

s2[++i] = '\0';

Due to the array-pointer relationship described earlier, your compiler should
produce exactly the same code for both the array and pointer versions. The
choice of which version to use, therefore, revolves around readability. We feel
that the array version is more straightforward. Although both versions are
perfectly fine and will work correctly, a superior version that runs faster on most
machines is the following:

void strcpy(sl, s2)
char *sl, *s2;

while (*s2++ = *sl++)
; /* null statement */

This version utilizes just about all of the shortcuts that C provides. Instead of
adding an offset to the string pointer, we just increment it with the post-incre
ment operator. The result of the assignment is used as the test condition for the
while loop. Remember that even an assignment expression has a value. If * s2
equals zero (which it will on the tenninating null character), the entire assign
ment expression will equal zero and the while loop will end. By using the
assignment expression as the test condition, we no longer need an extra state
ment to assign the tenninating null character. Note that we use a postfix
increment operator instead of a prefix operator. If we used ++ before the
variable

(*(++sl»

the function would not work because it would always skip the initial element.

www.manaraa.com

188 Chapter 6

We say this version is "superior," but perhaps we should qualify this term. This
version is superior in the sense that it produces the most efficient machine code.
At fIrst blush, it may seem less readable than our fIrst version because so many
things are happening at once. To an experienced C programmer, however, it is
more readable because seasoned C programmers are familiar with the techniques
being used. Very often, there is a give-and-take relationship between readability
and efficiency. The decision as to which quality is more important depends to a
large degree on your application and your resources. If you have unlimited CPU
power and memory, the question of efficiency should take a backseat to readabil
ity. If it is important that your program runs fast and occupies a small amount of
memory, you may have to make some sacrifIces to readability. The efficient
version of strcpy() illustrates the power and elegance of the C language. Do not
be discouraged, though, if you feel uncomfortable with this version. Like any
foreign language, the C language is full of idioms that take time to learn.

6.10.7 Pattern Matching

The next program is a pattern-matching function. Though not part of many C
libraries, this is nevertheless a common and useful function. (In the ANSI C
runtime library, this function is called strstr(), but we call it pat _ match().) It
accepts two arguments, both pointers to character strings. It then searches the
first string for an occurrence of the second string. If it is successful, it returns
the byte position of the occurrence; if it is unsuccessful, it returns -1. For
example, if the first string is: "Everybody complains about the weather but
nobody ever does anything about it" and the second string is "the weather," the
function would return 26 because "the weather" starts at element 26 of the first
string.

www.manaraa.com

Arrays and Pointers

#include <stdio.h>

/* Return the position of str2 in strl; -1 if not

* found.
*/

int pat match(str1, str2)
char str1[], str2[];

int j, k;

for (j=O; j < strlen(strl); ++j)

/* test str1[j] with each character

* equal, get next char in str1 [] .
in str2 [] .
Exit loop if

* get to end of strl [], or if chars are equal.

*/
for (k=O; (k < strlen (str2) && (str2 [k] ==

str1 [k+j])); k++);

If

we

/* Check to see if loop ended because we arrived at
* end of str2. If so, strings must be equal.
*/

if (k == strlen(str2))
return j;

return -1;

189

There are two loops, one nested within the other. The outer loop increments j
until it reaches the end of str 1. The inner loop compares the current character in
strl with the first character in str2. If they are equal, it tests the next character in
each string. The loop ends either when the characters in the two strings no
longer match or when there are no more characters in str2. If the loop ends
because there are no characters left, the strings match and we return j, which is
the byte position in str1. If the loop ends because the strings do not match, we
jump back to the outer loop and test the next character in str 1. If we reach the
end of str 1 without a match, we return -1.

The value -1 is convenient as a failure indicator because there is no possibility
of ambiguity. If the pattern match is successful, a non-negative number will be
returned. You will find that most functions in the C library return either -lor 0
as a failure signal. In this example, we cannot return 0 for failure because 0 will
be returned if the pattern match is successful on the initial element of str2.

www.manaraa.com

190 Chapter 6

The pat _ match() function has a serious flaw. It calls strlen() with each iteration
of the for loop. This is a waste of computer cycles since the string length never
changes. We can remove this problem by storing the string length in a variable:

#include <stdio.h>

/* Return the position of str2 in str1; -1 if not
* found.
*/

pat_match (str1, str2
char str1 [], str2 [] ;
{

int j, k;
int length1
int length2

strlen(strl);
strlen (str2);

for (j=O; j < length1; ++j)
{

for (k=O; k < length2; k++)
if (str2 [k] ! = strl [k+j])

break;
if (k == length2)

return j;

return -1;

This second version requires two extra variables, but the savings in CPU effort
are well worth the extra memory allocation. An even more efficient version of
this function is shown on the following page. Again, while it is more efficient, it
may be less readable to you. However, the more programs you see that use these
idioms and shortcuts, the more readable they will become.

www.manaraa.com

Arrays and Pointers 191

/* Return the first occurrence of str2 in strl
* using pointers instead of arrays; return-l
* if no match is found.
*/

pat_match (strl, str2
char *strl, *str2;
{

char *p, *q, *substr;

/* Iterate for each character position in strl */
for (substr = strl; *substr; substr++)

{

p = substr;
q = str2;

/* See if str2 matches at this char position */
while (*q)

if (*q++ != *p++)
goto no_match;

/* Only arrive here if every char in str2
* matched. Return the number of characters
* between the original start of strl and the
* current character position by using pointer
* subtraction.
*/

return substr - strl;

/* Arrive here if while loop couldn't match str2.
* Since this is the end of the for loop, the
* increment part of the for will be executed
* (substr++), followed by the check for
* termination (*substr), followed by this loop
* body. We have to use goto to get here because
* we want to break out of the while loop and
* continue the for loop at the same time. Note
* that the semicolon is required after the label
* so that the label prefixes a statement (albeit
* a null one).
*/

no_match: ;

/* We arrive here if we have gone through every
* character of strl and did not find a match.
*/
return -1;

www.manaraa.com

192 Chapter 6

To show how to use pat_match(), we need to write a main() routine that reads in
a string and a pattern to be matched. However, we can't use scanf() and %s
because scanf() stops assigning characters to the array as soon as a space charac
ter is encountered. If a string or pattern contains a space, the program won't
work. Fortunately, there is another runtime routine, called gets(), that reads a
string from your terminal (including spaces) and assigns the string to a character
array. The gets() function takes one argument, which is a pointer to the character
array. Characters are read from the terminal until a linefeed or end-of-file is
encountered. When you use this function, be sure to make your character array
large enough to hold the longest possible input string. The following example
shows how we might call pat _ match().

#include <stdio.h>

main()
{

char first_string[100] , pattern[100];
int pos;

printf("Enter str: ");
gets (first_string);
printf("Enter pattern to be matched: ");
gets(pattern);
pos = pat_match (first_string, pattern);
if (pos == -1)

printf("The pattern was not matched.\n");
else

printf("The pattern was matched at position\
%d\n", pos);

exit (0);

A typical execution of the program would be

Enter str: To be or not to be, that is the question.
Enter pattern to be matched: to be
The pattern was matched at position 13

The first "To be" is not matched because the "T" is capitalized: the pattern
matching function is case sensitive.

www.manaraa.com

Arrays and Pointers 193

In addition to the string functions used in the previous examples, there are many
others in the Standard Library (see Table 6-1).

strcpy()

strncpy()

strcat()

strncat()

strcmp()

strncmp()

strchr()

strcoll()

strcspn()

strerror()

strlen()

strpbrk()

strrchr()

strspn()

strstr()

strtok()

strxfrm()

Copies a string to an array.

Copies a portion of a string to an array.

Appends one string to another.

Copies a portion of one string to another.

Compares two strings.

Compares two strings up to a specified number of
characters.

Finds the first occurrence of a specified character in a
string.

Compares two strings based on an implementation
defined collating sequence.

Computes the length of a string that does not contain
specified characters.

Maps an error number with a textual error message.

Computes the length of a string.

Finds the first occurrence of any specified characters
in a string.

Finds the last occurrence of any specified characters
in a string.

Computes the length of a string that contains only spe
cified characters.

Finds the first occurrence of one string embedded in
another.

Breaks a string into a sequence of tokens.

Transforms a string so that it is a suitable as an argu
ment to strcmp().

Table 6-1. String Functions in the Standard Library. See Appendix
A for a more complete description of these routines.

www.manaraa.com

194 Chapter 6

6.11 Multidimensional Arrays
An array of arrays is a multidimensional array and is declared with consecutive
pairs of brackets. For instance,

/*

*
In the following, x is a 3-element array of
5-element arrays.

*/
intx[3][5];

/*

*
In the following, x is a 3-element array of
4-element arrays of 5-element arrays.

*/
char x [3] [4] [5] ;

Although a multidimensional array is stored as a one-dimensional sequence of
elements, you can treat it as an array of arrays. For example, consider the
following 5 x 5 "magic square." It is called magic because the rows, columns,
and diagonals all have the same sum.

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

To store this square in an array, we could make the following declaration:

static int magic[5] [5] = { {17 I 24 I 1 I 8 I 15 },

{23 I 5 " 7 I 14 I 16 } I

{ 4 I 6 I 13 I 20 I 22 } I

{lO I 12 I 19 I 21 I 3 } I

{l1 I 18 I 25 I 2 I 9 }

} ;

In the initialization, each row of values is enclosed by braces.

www.manaraa.com

Arrays alld Pointers 195

To access an element in a multidimensional array, you specify as many sub
scripts as are necessary. Multidimensional arrays are stored in row-major order,
which means that the last sUbscript varies fastest. For example, the array de
clared as

int ar[2] [3]={ 0, 1, 2 },
3, 4, 5 }

} ;

is stored as shown in Figure 6-6.

Element Address
(in hex)

ar[O][O] 1000

ar[O][1] 1004

ar[O][2] 1 008

ar[1][0] 100C

ar[1][1] 1010

ar[1][2] 1014

1018

Memory

./

Contents

0

1

2

3

4

5

Figure 6-6. Storage of a Multidimensional Array.

The array reference

ar [1] [2]

is interpreted as

*(ar[l] + 2)

which is further expanded to

* (* (ar+l) +2)

~

/

/

/

/

/

/

~

www.manaraa.com

196 Chapter 6

Recall that ar is an array of arrays. When *(ar+ 1) is evaluated, therefore, the 1
is scaled to the size of the object, which in this case is a 3-element array of ints
(which we assume are four bytes long), and the 2 is scaled to the size of an int:

* (int *) ((char *)ar + (1*3*4)) + (2*4))

We put in the (char *) cast to turn off scaling because we have already made the
scali~g explicit. The (int *) cast ensures that we get all four bytes of the integer
when we dereference the address value. After doing the arithmetic, the expres
sion becomes

* (int *) ((char *) ar + 20)

The value 20 has already been scaled so it represents the number of bytes to skip.
If ar starts at address 1000, as in our picture, ar[lJ[2] refers to the int that
begins at address 1014 (hex value), which is 5.

If you specify fewer subscripts than there are dimensions, the result is a pointer
to the base type of the array. For example, given the two-dimensional array
declared above, you could make the reference

ar[l]

which is the same as

&ar[l] [0]

The result is a pointer to an into

The ANSI Standard places no limits on the number of dimensions an array may
have, although implementations may impose a limit. They are required, howev
er, to support at least six dimensions.

6.11.1 Initializing a Multidimensional Array
When initializing a multidimensional array, you may enclose each row in braces.
If there are too few initializers, the extra elements in the row are initialized to
zero. Consider the following example:

static int examp[5] [3] = { 1 , 2 , 3 },
4 },
5 , 6 , 7 } };

This example declares an array with five rows and three columns, but only the
first three rows are initialized, and only the first element of the second row is
initialized. Pictorially, this declaration produces the following array:

123
400
567
000
000

www.manaraa.com

Arrays and Pointers

If we do not include the inner brackets, as in

static int examp[5] [3] = { 1 , 2 , 3 ,
4 ,

the result is

123
456
700
000
000

5 , 6 , 7 };

197

Obviously, the initializer in this example is very misleading. To enhance read
ability and clarity, you should always enclose each row of initializers in its own
set of braces, as we did in the first example.

As with one-dimensional arrays, if you omit the size specification of a multidi
mensional array, the compiler automatically determines the size based on the
number of initializers present. In the case of multidimensional arrays, however,
it is important to remember that you are really declaring an array of arrays. That
is, you are declaring an array where each element is itself an array. You may
omit the number of elements in the outermost array you are declaring because
the compiler can figure this out based on the number of initializers present.
From a syntactic point of view, this means that you may only omit the first size
specification, but you must specify the other sizes. For example,

static int a_ar[] [3] [2] {{{1, 1}, {O,O}, {1,1}},

{{O, O}, {1,2}, {O,l}}
}

results in a 2-by-3-by-2 array because there are twelve initializers. Each element
in the array a _ar is itself a 3-by-2 array. If we added another initializer, the
compiler would allocate space for a 3-by-3-by-2 array, initializing the extra
elements to zero. The following declaration is illegal because the compiler has
no way of knowing what shape the array should be:

/* ILLEGAL
*/

static int b_ar[] [] = { 1, 2, 3, 4, 5, 6 };

Should the compiler create a 2-by-3 array or a 3-by-2 array? There's no way to
tell. However, if you specify the size of each array other than the first, the
declaration becomes unambiguous.

www.manaraa.com

198 Chapter 6

Box 6·4: Bug Alert - Referencing Elements in a
Multidimensional Array

One of the most common mistakes made by beginning C programmer -
e peciaUy those familiar with another programming language- is to u e a
comma to separale ub cripts

ar[l , 2] = 0 ; /* Legal , but probably wrong */

in lead of

ar[!] [2] = 0 ; /* Correct */

The comma notation is used in orne other language, uch a FORTRA
and Pa cal. In C, however, thi notation has a very different meaning
becau e the comma is a C operator in its own right. The first statement
above cau e the compiler 10 evaluate the expre ion J and discard the
re ult; then evaluate the ex pre ion 2. The re ult of a comma expres ion
i the value of the rightmo t operand, so the value 2 becomes the ub-
cript to ar. A a result, the array reference acce e element 2 of ar.

If ar i a two-dimensional array of int , the type of ar[2] i a pointer to
an int, 0 thi mi take will produce a type incompatibility error. Thi can
be mi leading ince the real mi take i using a comma instead of brack
ets.

6.11.2 Passing Multidimensional Arrays as
Arguments

To pass a multidimensional array as an argument, you pass the array name as you
would a single-dimension array. The value passed is a pointer to the initial
element of the array, but in this case the initial element is itself an array. On the
receiving side, you must declare the argument appropriately, as shown in the
example on the following page.

www.manaraa.com

Arrays and Pointers

fl()
{

int ar[5] [6] [7];

f2 (ar);

f2(received_arg)
int received_arg[] [6] [7];

199

Again, you may omit the size of the array being passed, but you must specify the
size of each element in the array. Most compilers don't check bounds, so it
doesn't really matter whether you specify the flrst size. For example, the com
piler would interpret the declaration of received _ arg as if it had been written

int (*received_arg) [6] [7];

Another way to pass multidimensional arrays is to explicitly pass a pointer to the
flrst element, and pass the dimensions of the array as additional arguments. In
our example, what gets passed is actually a pointer to a pointer to a pointer to an
into

fl()
{

int ar[5][6][7];

f2 (ar, 5, 6, 7);

f2(received_arg, diml, dim2, dim3)
int ***received_arg;
int diml, dim2, dim3;

www.manaraa.com

200 Chapter 6

The advantage of this approach is that you need not know ahead of time the
shape of the multidimensional array. The disadvantage is that you need to
perform the indexing arithmetic manually to access an element. For example, to
access ar[x][y][z] inj2(), you would need to write

*({int *)received_arg + x*dim3*dim2 + y*dim2 + z)

Note that we need to cast received _ arg to a pointer to an int because we are
performing our own scaling. Although this method requires considerably more
work on the programmer's part, it gives more flexibility to j2() since it can
accept three-dimensional arrays of any size and shape. Moreover, it is possible
to define a macro that simplifies the indexing expression. However, we defer a
discussion of complex macros to Chapter 10.

6.11.3 Multidimensional Array Example

The following function is a practical example of how multidimensional arrays
are used. The purpose of the function is to determine the resulting data type of a
binary expression. The function takes two arguments, which are integers repre
senting the data types of the operands. It returns an integer representing the
result type. You may want to review Chapter 3 if you have forgotten how C
determines the data types of expressions.

#include <stdio.h>

typedef enum {SPECIAL = -2, ILLEGAL, INT, FLOAT,
DOUBLE, POINTER, LAST} TYPES;

TYPES type_needed (typel, type2)
TYPES typel, type2;
{

static TYPES result _type [LAST] [LAST] =

/* int float double
*/

/* int */ INT, DOUBLE, DOUBLE,
/*float */ DOUBLE, DOUBLE, DOUBLE,
/*double */ DOUBLE, DOUBLE, DOUBLE,
/*pointer*/ POINTER, ILLEGAL, ILLEGAL,

TYPES result = result_type [typel] [type2];

if (result == ILLEGAL)

pointer

POINTER,
ILLEGAL,
ILLEGAL,
SPECIAL

} ;

printf("Illegal pointer operation.\n");
return result;

www.manaraa.com

Arrays and Pointers 201

All of the work is done by the array declaration. Each data type is assigned an
integer value with the enum declaration; then we set up a matrix of return types.
If typeI is an int and type2 is a float, the return type is DOUBLE (as is the case
on most pre-ANSI compilers-the result type is float on ANSI compilers).
Because of the way we have set up the two-dimensional array, all we need to do
is input the two types as subscripts and the referenced element gives us the return
type.

This function illustrates a number of important programming concepts that are
worth reviewing. First, note that we use an enum to define constants for all of
the return data types. This way, we can add new types without worrying about
what integer value is used to represent them. The enum declaration ensures that
each constant name will have a unique integer value and that LAST will repre
sent the total number of types. Note that we use LAST to specify the size of the
array.

Also, we use comments and formatting techniques to make the array as readable
as possible. The computer itself doesn't care how it is formatted. We could
write the declaration as follows and the program would work exactly the same,
but it would be harder to understand and maintain.

char return_type [4] [4] { 0, 2, 2, 3, 3, 1, 2, -1,
2,2,2, -1, 3, -1,-1,-2

} ;

Finally, we should say a word about the SPECIAL case when both operands are
pointers. This expression is legal only if the pointers point to the same type of
object and if the operator is a minus sign, in which case the result is an into To
make this function perfect, therefore, we would need to determine what type of
pointers the operands are and what the operator is.

6.12 Arrays of Pointers
In certain situations, it is useful to employ an array of pointers. Consider the
following declaration:

The variable ar_ofy[] is a 5-element array of pointers to characters, not a
pointer to a 5-element array of characters. This is because the array element
operator [] has higher precedence than the dereferencing operator *. We discuss
complex declarations such as this one in more detail in Chapter 9.

www.manaraa.com

202 Chapter 6

So far the pointers have not been assigned any values, so they point to random
addresses in memory. But you can make assignments such as

char *ar_of_p[5l;
char cO 'a';
char cl = 'b';

ar_of_p[Ol &cO;
ar_of_p[ll &cl;

These declarations and assignments cause the compiler to do two things. First it
must allocate two bytes somewhere in memory for the variables cO and cl. Then
it assigns the addresses of these variables to ar _ofy[OJ and ar _ofy[lJ. Figure
6-7 shows the storage relationship. The addresses in the figure are arbitrary.
The only thing that is guaranteed is that ar _ofy[OJ and ar _of.J)[1] will contain
the addresses of cO and cl and that cO and cl will be initialized to 'a' and 'b'.

Element Address Memory Element Address Memory

996 1FFF

ar_ofJ>[O] 1000 2000 CO 2000 'a'

ar_oCp[1] 1004 2001 C1 2001 'b'

ar_ofJ>[2] 1008 undefined 2002

ar_oCp[3] 100C undefined

ar_oCp[4] 1010 undefined

1014

Figure 6-7. Array of Pointers.

Arrays of pointers are frequently used to access arrays of strings. The following
function, for example, takes an integer (from I to 12) representing a month as its
input and prints the name of the month.

www.manaraa.com

Arrays and Pointers

#include <stdio.h>

void print_month (m
int m;

203

static char *month[13] = { "Badmonth", "January",
"February", "March", "April", "May",
"June", "July", "August", "September",
"October", "November", "December"

if (m > 12)
{

} ;

printf("Illegal month value.\n");
exit (1);

printf("%s\n", month[m]);

The variable month is a 13-element array of pointers to chars. Because of the
initialization, each pointer actually points to the initial element of a string.
Figure 6-8 shows how this would be stored in memory. Note that the month
names are not necessarily contiguous, as shown by the gap between "February"
and "March." The characters making up each name must be contiguous, but the
names themselves can be placed anywhere the compiler sees fit.

Note that the array contains 13, not 12, elements, and that the initial element is
initialized to "Badmonth." The reason we have this extra pointer with a useless
value is so that we don't have to subtract anything from the subscript. We could
just as easily declare a 12-element array and then change the printf() statement to

printf("%s\n",month[m-l]);

We prefer the first version, though, because it is more straightforward. It is a
fairly common practice to discard the initial element of an array when the
subscript values start naturally at 1. The only drawback to doing this is that you
must allocate an extra element that is never used. But doing arithmetic on a
subscript expression also has its price. Additional arithmetic operations usually
translate into extra machine code that makes the program run more slowly. The
extra instructions also take up more memory, so you don't even save memory by
using element zero. Like many stylistic issues, the question of whether to declare
an extra unused element is a question of readability and efficiency. The correct
answer depends on the machine code produced by your compiler, the computer
resources at your disposal, and your own aesthetic inclinations.

www.manaraa.com

204 Chapter 6

Element Address Memory Address Memory Address Memory

+ 4 bytes .. +1 byte" +1 byte"

month[O] 1000 2000 2000 'B' 2011 'F'

month[1] 1004 2d09
2001 'a' 2012 'e'

2002 'd' 2013 'b'

month[2] 2011 2010
2003 'm' 2014 'r'

month[3] 100C 2500 2004 '0' 2015 'u'

month[4] 1020 2800
2005 'n' 2016 'a'

2006 't' 2017 'r'

month[5] 1024 3000
2007 'h' 2018 'y'

month[6] 1028 3006 2008 '\0' 2019 '\0'

month[7] 102C 300A 2009 'J' II(\ \ III

"" \ III(
11\111\11\1111

200A 'a' 2500 'M'
month[8] 1030 300F

2008 'n'
2501 'a'

month[9] 1034 4000 200C 'u' 2502 'r'

month[10] 1038 400A 2000 'a'
2503 'c'

month[11] 103C 4011

200E

200F

'r'

'y'

2504 'h'

2505 '\0'

month[12] 1040 401A 2010 '\0'
'::::::::::::::::::':::::' 11>\1

Figure 6-8. Storage of an Array of Pointers to Strings.

www.manaraa.com

Arrays and Pointers 205

The print _ month() function would be more useful if, instead of printing the
month, it returned it. The calling function could then do with it what it wished.
To write this version, we need to declare a function that returns a pointer to a
char.

#include <stdio.h>

char *month_text(m
int m;

static char *month[13] = { "Badmonth", "January",
"February", "March", "April", "May",
"June", "July", "August", "September",
"October", "November", "December"

if (m > 12)
{

} ;

printf("Illegal month value.\n");
exit (1);

return month [m] ;

6.13 Pointers to Pointers
A pointer to a pointer is a construct used frequently in sophisticated programs.
To declare a pointer to a pointer, precede the variable name with two successive
asterisks. For instance,

int **p;

declares p to be a pointer to a pointer to an int. To dereference the pointer and
access the int, you also need to use two asterisks. For example,

j = **p;

assigns an integer to j.

Consider the following series of declarations:

int r = 5;
int *q = &r;
int **p = &q;

These declarations result in the storage pattern shown in Figure 6-9. Both q and r
are pointers, but q contains the address of an int, whereas p contains the address
of a pointer to an int.

www.manaraa.com

206 Chapter 6

We can assign values to r in three ways, as shown in the following statements:

r = 10;
*q = 10;
**p = 10;

Variable

r

q

p

/* Direct assignment */
/* Assignment with one indirection */
/* Assignment with two indirections */

Memory

Address Contents

+-- 4 bytes ----+
./ /

99C 5 V

/

1004 99C /

/

100C 1004 /

I

Figure 6-9. A Pointer to a Pointer.

As an example of when you might use a pointer to a pointer, suppose you want
to write a spelling checker. The function takes a string as input and compares it
to an internal dictionary to see if it matches. If it does match, a null pointer is
returned; if it doesn't, a pointer to the spelling of the closest match is returned.
To make the program more useful (and illustrate pointers to pointers), though,
let's write it so that it tests not only English words, but French words as well.

One way to do this is to create a two-dimensional array of pointers. The first
subscript selects the English or French dictionary; the second subscript selects a
particular word in one of the dictionaries. In addition to accepting a string as an
argument, the function takes another argument that indicates the language of the
input string. These parameters are put in a header file that we call spell.h:

typedef enum { FRENCH, ENGLISH, LANG NUM } LANGUAGE;
extern char *check_spell();
#define NULL (char *) 0

www.manaraa.com

Arrays and Pointers

The function might look like the following example.

#include "spell.h"
#define MAX WORDS 50
/* Dictionary in alphabetic order

* with NULL as last entry.
*/
static char *dict[LANG_NUM] [MAX_WORDS] = {

{ "aardvark", "abacus", "abash", "abbot",
"abhor", "able", "abort", "about", NULL

} ,

207

{ "abeille", "absence", "absurde", "accepter",
"accident", "accord", "achat", "acheter",

NULL
} ;

/* Return NULL pointer if str is found in
* dictionary. Otherwise, return a pointer to
* the closest match
*/

char *check spell(str, language)
char *str;
LANGUAGE language;
{

int j, diff;

/* Iterate over the words in the dictionary */
for (j=O; dict[language] [j] != NULL; ++j)

diff = strcmp(str, dict[language] [j]);
/* Keep going if str is greater than dict entry */

if (diff > 0)
continue;

if (diff == 0)
return NULL; /* Match! */

/* No match, return closest spelling */
return dict [language] [j];

/* Return last word if str comes after last
* dictionary entry
*/

return dict[language] [j-l];

www.manaraa.com

208 Chapter 6

To save space and energy, we entered only the first few words of the dictionary.
Nonnally, the dictionary would be stored in a file so you would not need to enter
the words in an initialization. The function strcmp(), which is part of the C
library, compares two strings and returns zero if they are equal and the difference
between the first two differing chars if they are not equal. If strcmp() returns
zero, the input string must be equal to one of the strings in the dictionary, so we
return NUll. If the input string doesn't match any of the strings in the dictio
nary, we assume that it is misspelled and return a pointer to the closest spelling.

Note that we need to include a null pointer as the last element in the initiali
zation list. This is because the for loop iterates based on the value of
dict[language][j], which is a pointer to a string of chars. So long as
dict[language][j] is a valid pointer, the loop will continue to iterate. When
dict[language][j] is a null pointer (i.e., all words in the array are exhausted), the
loop will tenninate. Without a null pointer to tenninate the loop, j would be
incremented beyond the reserved storage for the array, causing unpredictable
behavior.

By using the language selector (language), we cut our work in half since we
need to check the words in only one of the dimensions. We can make the
function even more efficient by introducing a pointer to a pointer. One of
the areas of inefficiency in the current version is the element reference
dict[language][j]. In order to evaluate this expression, the compiler has to do a
fair amount of arithmetic, detennining the offset values and scaling them to the
proper size. By eliminating one or both of the subscript operators, we can make
the function more efficient.

www.manaraa.com

Arrays and Pointers

#include "spell.h"
#define MAX WORDS 50
/* Dictionary in alphabetic order

* with NULL as last entry.
*/
static char *dict[LAST_LANG] [MAX_WORDS] = {

{ "aardvark", "abacus", "abash", "abbot",
"abhor", "able", "abort", "about", NULL

} ,

209

{ "abeille", "absence", "absurde", "accepter",
"accident", "accord", "achat", "acheter",

NULL
} ;

/* Return NULL pointer if str is found in
* dictionary. Otherwise, return a pointer to
* the closest match. This time use pointers
* instead of array references
*/

char *check_spell(str, language
char *str;
LANGUAGE language;
{

int diff;
char **z;

/* Iterate over dictionary entries */
for (z = dict[language]; *z; z++)

{

diff = strcmp(str, *z)
/* Keep going if str is greater than dict entry */

if (diff > 0)
continue;

if (diff == 0)
return NULL; /* Match! */

/* No match, return closest spelling */
return *z;

/* Return last word if str comes after last
* dictionary entry
*/

return z[-l];

www.manaraa.com

210 Chapter 6

The variable z is declared to be a pointer to a pointer to a char. It is used to hold
the addresses of the elements of dict[language]. Recall that dict[] is an array of
arrays, so z points to an element of one of two arrays, either dict[ENGLlSH] or
dict[FRENCH]. The for statement then increments z directly instead of using a
subscript. If the function does not fmd a match, it returns *z, where z is the
pointer to the current dictionary entry. This is the same algorithm as the fIrst
version; all we have done is to take the array address expression, &dict[lan
guage][j], and put it in z.

This second version of check _spell() may seem like a lot of trouble to go through
just to eliminate some subscripts, and in a sense it is. But it illustrates one of C's
strengths: there is almost always something you can do to make a program more
efficient. This type of improvement-removing subscripts so the compiler can
avoid excessive pointer arithmetic-is called strength reduction.

www.manaraa.com

Arrays and Pointers 211

Exercises
1. Modify the avg_temp() function so that it prints the average tempera

ture for each month. Use an array to store the number of days in each
month.

2. Write a function that initializes encoder[] with random values. Use the
rand() and srand() functions described in Chapter 12, and make sure
that all the elements have a unique value from 0 through 127.

3. Given the following declarations and assignments, what do these ex
pressions evaluate to?

static int ar[]={10, 15, 4, 25, 3, -4};
int *p;
p = &ar[2];

a) *(p+l)
b) p[-I]
c) (ar-p)
d) ar[*p++]
e) *(ar+ar[2])

4. What's wrong with the following code?

int j, ar [5] = {1, 2, 3, 4, 5 };
for (j=l; i < 5; ++j)

printf("%d\n", ar[j]);

5. Modify the bubble sort program so that instead of actually rearranging
the elements of an array, it stores the correct order in another array
called ord[]. For example, if an original 5-element sequence is

13 25 11 2 14

then the values of ord[] after sorting should be

ord[O] 2
ord[l] 4
ord[2] 1
ord[3] °
ord[4] 3

www.manaraa.com

212 Chapter 6

6. Write a function called merge _ arrays() that takes two sorted arrays and
merges them into one sorted array. The function header should be

void merge_arrays()
double *a, *b, *c;

where a and b are pointers to the two sorted arrays and c is a pointer to
the resulting merged array.

7. Modify merge _ arrays() so that it eliminates duplicate entries.

8. Write a function called strcat() that appends one string to another. The
function should accept two arguments that are pointers to str 1 and str2
and return a pointer to the first character in strJ. Make sure to over
write the null character in str 1.

9. Rewrite the strlen() function using pointers and increment operators to
make it as efficient as possible.

10. Revise pat _ match() so that it is not case sensitive.

11. Are the declarations

char s[10];

and

char *s;

the same? If not, show how they are different by writing a program
where they cannot be interchanged.

12. The names of many high-tech companies all sound similar. They start
with roots such as "Com," "Data," "Inter," and end with suffixes such
as "graph," "dex," and "mation." Come up with some more beginnings
and endings, and write a program using randO that randomly puts the
two together to form company names.

13. Modify the program in Section 6.10.4 so that it does not fail if the input
string is more than MAX_CHAR characters.

14. Modify the result_type() function so that it works correctly for the
SPECIAL case. (Hint: you will need to add an additional argument to
the function.)

15. Write a function that sorts an array of character strings into alphabetical
order. Note that this is really a two-dimensional array of chars.

www.manaraa.com

and Pointers 213

16. Given the following declarations, what do these expressions evaluate
to?

static int a [2] [3] = { { -3, 14, 5 },
{ 1, -10, 8 }

static int *b []
int *p = b[l];

a) *b[1]
b) *(++p)
c) *(*(a+ 1)+ 1)
d) *(-p-2)

} ;

a[O] , a[l] };

17. Which of the following expressions are equivalent to a[j][k]?

a) *(a[j] + k)
b) **(a[j+k])
c) (*(a+j»[k]
d) (*(a+k»[j]
e) *«*(a+j» + k)
f) **(a+j) + k
g) *(&a[O][O] + j + k)

www.manaraa.com

Chapter 7

Storage Classes

Memory: what wonders it performs in preserving and
storing up things gone by, or rather, things that are! -
Plutarch, Morals: On the Cessation of Oracles

Most large programs are written by teams of programmers. After they design the
general outline of the program together, each programmer goes off and writes an
isolated piece of the program. When everyone is finished, all the pieces are
linked together to fonn the complete program. For this process to work, there
must be a mechanism to ensure that variables declared by one programmer don't
conflict with unrelated variables of the same name declared by another program
mer. On the other hand, there is usually some data that needs to be shared
between different source files, so there must also be a mechanism that ensures
that some variables declared in different files do refer to the same memory
locations and that the computer interprets those locations in a consistent fashion.
In C, you define whether a variable is to be shared, and which portions of code
can share it, by designating its scope.

"Scope" is the technical term that denotes the region of the C source text in
which a name's declaration is active.

Another property of variables is duration, which describes the lifetime of a
variable's memory storage. Variables with fixed duration are guaranteed to
retain their value even after their scope is exited. There is no such guarantee for
variables with automatic duration.

www.manaraa.com

Storage Classes 215

Collectively, the scope and duration of a variable is called its storage class. This
chapter describes storage classes in detail.

Consider the following program segment:

void func ()
{

int j;
static int ar[]={1,2,3,4};

There are two variables, j and ar. Both have block scope because they are
declared within a block. They can be referenced, or "seen," only by statements
within the block. Variables with block scope are often called local variables.

Variable j has automatic duration (the default for variables with block scope),
whereas ar has fIXed duration because it is declared with the static keyword.
This means that j has memory allocated to it automatically and may have a new
address each time the block is entered. ar, on the other hand, has memory
allocated for it just once and keeps its original address for the duration of the
program.

The next section describes fixed and automatic variables in more detail. We use
the term "fixed" as opposed to the more common term "static" so as not to
confuse the concept with the keyword. The static keyword does give a variable
static duration but it also has scoping implications not usually associated with
static variables.

7.1 Fixed vs. Automatic Duration
As the names imply, a fixed variable is one that is stationary, whereas an auto
matic variable is one whose memory storage is automatically allocated during
program execution. This means that a fixed variable has memory allocated for it
at program start-up time, and the variable is associated with a single memory
location until the end of the program. An automatic variable has memory
allocated for it whenever its scope is entered. The automatic variable refers to
that memory address only as long as code within the scope is being executed.
Once the scope of the automatic variable is exited, the compiler is free to assign
that memory location to the next automatic variable it sees. If the scope is
reentered, a new address is allocated for the variable. There is no way to ensure
that an automatic variable will retain its value from one scope entry to another.

Local variables (those whose scope is limited to a block) are automatic by
default, but you can make them fixed by using the keyword static in the declara
tion. The auto keyword explicitly makes a variable automatic, but it is rarely
used since it is redundant.

www.manaraa.com

216 Chapter 7

7.1.1 Initialization of Variables

The difference between fixed and automatic variables is especially important for
initialized variables. Fixed variables are initialized only once, whereas automat
ic variables are initialized each time their block is reentered. Consider the
following program:

void increment()
{

int j=l;
static int k=l;

j++;
k++;
printf("j: %d\tk: %d\n", j, k);

main()
{

increment();
increment();
increment();

The increment() function increments two variables, j and k, both initialized to I.
j has automatic duration by default, while k has fixed duration because of the
static keyword. The result of running the program is

j: 2 k: 2
j: 2 k: 3
j: 2 k: 4

When increment() is called the second time, memory for j is reallocated and j is
reinitialized to 1. k, on the other hand, has still maintained its memory address
and is not reinitialized, so its value of 2 from the first function call is still
present. No matter how many times we call increment(), the value of j will
always be 2, while k will increase by 1 with each invocation.

We can summarize this observation with the following rule: an automatic vari
able, when declared with an initializer, is reinitialized every time its block is
reentered; aflXed variable is initialized only once at program start-up time.

www.manaraa.com

Storage Classes 217

Another important difference between automatic and fixed variables is that auto
matic variables are not initialized by default whereas fixed variables get a default
initial value of zero. If we rewrite the previous program without initializing the
variables, we get

void increment()
{

int j;
static int k;

j++;
k++;
printf("j: %d\tk: %d\n", j, k);

main()
{

increment();
increment();
increment();

Executing the program on our machine results in

j: 3604481
j: 3604481
j: 3604481

k: 1
k: 2
k: 3

The values of j are random because the variable is never initialized. With each
invocation of increment(), j receives a new memory allocation and acquires
whatever "garbage" value happens to be at the new location. Because most
compilers use a stack-frame implementation, the garbage values may, in this
simple example, be the same each time. The C language, however, does not
guarantee this. If you use a more complicated calling sequence, the results will
be different. A helpful compiler will issue a warning if you attempt to use an
uninitialized automatic variable before you have made an assignment to it.

Another difference between initializing variables with fixed and automatic dura
tion is the kinds of expressions that may be used as an initializer. For scalar
variables with automatic duration, the initializer may be any expression so long
as all of the variables in the expression have been previously declared. For
example, all of the following declarations are legal.

www.manaraa.com

218 Chapter 7

int j 0, k = 1;
int m j + k;
float x = 3.141 * 2.3;

The next series of declarations is illegal because j and k appear in an expression
before they are declared:

/* The following assignment is illegal because j
* and k have not yet been declared.
*/

int m j + k;

/* j and k are declared now, but it's too late.
*/

int j = 0, k = 1;

The rules for initializing variables with fixed duration are stricter. The initializa
tion must be a constant expression, which means that it may not contain variable
names. For example,

int j
int k

10 * 4; /* OK */
j; /* NOT OK */

7.1.2 Using Variables with Fixed Duration

A common use of fixed variables is to keep track of how many times a function
is invoked and to change the function's execution at regular intervals. As an
example, suppose you have a program that formats an input text file and writes
the formatted output to another file. One of the functions in the program is
print _ header() , called at the beginning of each new page. However, you want it
to write a different header depending on whether the page is even-numbered or
odd-numbered. The following version shows a possible solution that makes use
of a fixed variable.

www.manaraa.com

Storage Classes 219

#define ODD 0
#define EVEN 1

print_header (chap_title
char *chap_title;
{

static char page_type ODD;

if (page_type == ODD)
{

printf("\t\t\t\t%s\n\n", chap_title);
page_type = EVEN;

else
{

printf("%s\n\n", chap_title);
page_type = ODD;

The variable page_type acts as a toggle switch, alternating between ODD and
EVEN. When the page number is odd, the function prints the string pointed to
by chap _title on the right side of the page; when the page is even, the chap_title
string appears on the left side. Note that the program depends on page_type
having fixed duration. If page_type had automatic duration, it would get rein
itialized to zero with each invocation and the function would always print
odd-numbered headers.

7.2 Scope
As stated earlier, the scope of a variable determines the region over which you
can access the variable by name. There are four types of scope: program, file,
function, and block.

• Program scope signifies that the variable is active among different source
files that make up the entire executable program. Variables with program
scope are often referred to as global variables.

• File scope signifies that the variable is active from its declaration point to
the end of the source file.

• Function scope signifies that the name is active from the beginning to the
end of the function.

• Block scope signifies that the variable is active from its declaration point to
the end of the block in which it is declared. A block is any series of state
ments enclosed in braces. This includes compound statements as well as
function bodies.

www.manaraa.com

220 Chapter 7

In general, the scope of a variable is determined by the location of its declara
tion. Variables declared within a block have block scope; variables declared
outside of a block have file scope if the static keyword is present, or program
scope if static is not present; only goto labels have function scope.

The four scopes are arranged hierarchically as shown in Figure 7-1. A variable
with program scope is also active within all files, functions, and blocks that
make up the program. Likewise, a variable with file scope is also active within
all functions and blocks in the file, but is not active in other parts of the program.
At the bottom of the hierarchy is block scope, the most limiting case.

Program Scope

File Scope

Function Scope

Block
Scope

Figure 7-1. Hierarchy of Active Regions (Scopes).

The program fragment below shows variables with all four types of scope:

int i; /* Program scope */
static int j; /* File scope */

func (k /* Program scope */
int k; /* Block scope */

int m; /* Block scope */

start: /* Function scope */

Note that function parameters have block scope. They are treated as if they are
the first declarations in the top-level block (see Box 7-1).

www.manaraa.com

Storage Classes 221

The C language allows you to give two variables the same name, provided they
have different scopes. For example, the two functions below both use a variable
calledj, but because they are declared in different blocks, they do not conflict.

func1 ()
{

int j;

func2 ()
{

int j;

It is also possible for variables with the same name to have different scopes that
overlap. In this event, the variable with the smaller scope temporarily "hides"
the other variable. For instance,

int j=10;
main()

/* Program scope */

{

int j; /* Block scope -- hides global j */
for (j=O; j < 5; ++j)

printf("j: %d", j);

There are two j's, one with program scope and the other with block scope.
Although they have the same name, they are distinct variables. The j with block
scope temporarily hides the other j, so the result of running the program is

j: 0
j: 1
j: 2
j: 3
j: 4

The j with program scope retains its value of 10.

www.manaraa.com

222 Chapter 7

7.2.1 Block Scope

A variable with block scope cannot be accessed outside its block. This
limitation is really an advantage since it protects the variable from inadvertent
side effects. By limiting the region over which variables can be seen, you reduce
the complexity of a program, making it more readable and maintainable. Block
scoping allows you to write sections of code without worrying about whether
your variable names conflict with names used in other parts of the program.
Also, readers of your program know that the variable's use is limited to a small
region.

It is also possible to declare a variable within a nested block. This temporarily
hides any variables of the same name declared in outer blocks. This feature can
be useful when you want to add some debugging code into a function. By
creating a new block and declaring variables within it, you eliminate the possi
bility of naming conflicts. In addition, if you delete the debugging code at a later
date, you need not look at the top of the function to find variable declarations
that also need to be deleted.

In the following example, we add some debugging code that prints the values of
the first ten elements of an array.

foo()
{

int ar[20];
int j;

/* Begin debug code */
{

/* This j does not conflict
int j;
for (j=O; j <= 10; ++j)

printf("%d\t" , ar [j]) ;

/* End debug code */

with other j's.*/

Although variable hiding is useful in situations such as these, it can also lead to
errors that are difficult to detect. Consequently, you should use the name-hiding
feature judiciously.

www.manaraa.com

Storage Classes 223

7.2.2 Function Scope
The only names that have function scope are goto labels. Labels are active from
the beginning to the end of a function. This means that labels must be unique
within a function. Different functions, however, may use the same label names
without creating conflicts.

Box 7-1: ANSI Note - Scope of Function
Arguments

According to the A SI Standard, the cope of function arguments is the
ame a the cope of variable declared at the top level. This makes it

illegal to hide a function argument by declaring a top-level block scope
argument with the ame name. For in tance,

func (a
int a ;
{

i nt a ; 1* This is illegal * /

In older compiler thi yntax may be legal, but we can think of no reason
for u ing it. In fact, it can be a trouble orne bug. Many compilers issue a
warning when they encounter thi yntax.

7.2.3 File and Program Scope
Giving a variable file scope makes the variable active throughout the rest of the
file. So if a file contains more than one function, all of the functions following
the declaration are able to use the variable. To give a variable file scope, declare
it outside a function with the static keyword.

Variables with program scope, called global variables, are visible to routines in
other files as well as their own file. To create a global variable, declare it outside
a function without the static keyword. In the following program segment, j has
program scope and k has file scope. Both variables can be accessed by routines
in the same file, but only j can be accessed by routines in other files .

i n t j;
static i nt k;

main ()
{

www.manaraa.com

224 Chapter 7

Variables with file scope are particularly useful when you have a number of
functions that operate on a shared data structure, but you don't want to make the
data available to other functions. A file that contains this group of functions is
often called a module. The linked-list functions in Chapter 8 illustrate a good
use of a variable with file scope.

Box 7-2: Bug Alert - The Dual Meanings of static

One of the mOSI confu ing peel about torage-class declarations in C is
that the static keyword eem \0 have two effects depending on where it
appears. In a declaration within a block, static gives a variable fixed
duration instead of automatic duration. Out ide a function. on the other
hand, static has nothing to do with duration. Rather, it controls the scope
of a variable, giving it file scope in tead of program cope.

One way of reconciling the e dual meanings is to think of static a
signifying both file coping and fixed duration. Within a block, the
stricter block scoping rule override static's file scoping, 0 fixed dura
tion i the only manifest re ult. Out ide a function. duration j already
fixed so file coping is the only manifest result.

7.3 Global Variables
In general, you should try to avoid global variables as much as possible. They
make a program hard to maintain because they increase a program's complexity.
If you are attempting to understand someone else's code, the static keyword

signifying file scope is a boon since it ensures that you need only look in the
current source file to see all interactions of the variable. If the static keyword is
absent, you must assume the worst and look at every source file that is part of the
program to see if the variable is used. This can be a frustrating and needless
exercise.

Global variables also create the potential for conflicts between modules. Two
programmers working on separate parts of a large project may choose the same
name for different global variables. The problem won't surface until the entire
program is linked together, at which time it may be difficult to fix.

When you need to share data among different routines, it is usually better to pass
the data directly, or pass pointers to a shared memory area. The one advantage
of global variables is that they produce faster code. In most cases, however, the
increase in execution speed comes at the expense of a significant decrease in
maintainability. Such trade-offs of execution speed for maintainability should be
made only at the end of a project when it is clear that performance is a problem.

www.manaraa.com

Storage Glasses 225

Because global names must be recognized not only by the compiler but also by
the linker or binder, their naming rules are a little different. The ANSI Standard
guarantees only that the first six characters of a global name will be recognized.
Also, a compiler may suspend the case-sensitivity rule for global names. This is
an unfortunate restriction, but it is necessary to support older systems. Note,
however, that even though the compiler may recognize only the first six charac
ters, you are not restrained from adding additional characters to make the name
more meaningful. Just make sure that the first six characters are unique.

7.3.1 Definitions and Allusions
Up to now, we have assumed that every declaration of a variable causes the
compiler to allocate memory for the variable. However, memory allocation is
produced by only one type of declaration, called a definition. Global variables
permit a second type of declaration, which we call an allusion. An allusion
looks just like a definition, but instead of allocating memory for a variable, it
informs the compiler that a variable of the specified type exists but is defined
elsewhere. In fact, we have already used allusions in some of our examples to
declare functions defined elsewhere. For example,

main ()
{

extern int f () ; /* Allusion to f() */
extern float g(); /* Allusion to g() */

Global variables follow the same rules as functions. Whenever you want to use
global variables defined in another file, you need to declare them with allusions.
For example, the following program contains allusions to j and array_of J[].

void func ()
{

extern int j; /* An allusion */
extern float array of_f[l; /* An allusion */

The extern keyword tells the compiler that the variables are defined elsewhere.
The purpose of the allusion is to enable the compiler to perform type checking.
For any global variable, there may be any number of allusions but only one
definition among the source files making up the program.

The rules for creating definitions and allusions are one of the least standardized
features of the C language because they involve not just the C compiler, but the
linker and loader as well. This section describes the ANSI rules. Box 7-3
describes two other common strategies.

www.manaraa.com

226 Chapter 7

To define a global variable according to the ANSI Standard, you need to make a
declaration with an initializer outside a function. The presence or absence of the
extern keyword has no effect. For instance, the following code defines two
global variables, one local variable, and alludes to one global variable:

int j=O; /* Global Definition */
extern float x = 1. 0; /* Global Definition */
func ()
{

int k = 0; /* Local Definition */
extern int j; /* Allusion to global variable */

If you omit an initializer, the compiler produces either an allusion (if extern is
specified) or a tentative definition (if extern is not present). A tentative defini
tion is a declaration that can become either a definition or an allusion depending
on what the remainder of the source file contains. If no real definition for the
variable occurs (Le., one with an initializer) in the remainder of the source file,
the tentative definition becomes a real definition, initialized to zero. Otherwise,
if there is a real definition in the source file, the tentative definition becomes an
allusion. In the following example, j is a tentative definition that becomes a real
definition, and k is a tentative definition that becomes an allusion.

int j;
int k;

f()
{

int j

/* Tentative Definition */
/* Tentative Definition */

1; /* Real definition of j makes the
* tentative definition an allusion.

*
* There is no real definition of k,
* so the tentative definition becomes
* a real definition.
*/

Typically, you put all allusions in a header file which can be included in other
source files. This ensures that all source files use consistent allusions. Any
change to a declaration in a header file is automatically propagated to all source
files that include that header file.

www.manaraa.com

Storage Classes 227

Box 7-3: Non-ANSI Strategies for Declaring Global
Variables

K&R Strategy

Thi trategy, sometime called the 'omitted-extern strategy," is the
imple t. Regardle of cope, if a declaration contain the extern key

word, it is an allusion and not a defmition. A global definition is
produced by declaring a variable outside a block, without the extern
keyword. For in tance, the following segment contain one definition (j)
and two aHu ions (k and m).

int j ;
exte r n int k ;
func ()
{

extern int m;

The pre ence or absence of an initializer does not affect whether the
declaration is a definition or an allu ion, but some compiler will not
allow you to include an initializer with an allusion. Tho e that allow an
initializer ignore it. Global variable defined without an initializer are
automatically initialized to zero.

UNIX Strategy

This technique, adopted by the C compiler for UNIX. u es the presence
or ab ence of an initializer to determine whether a declaration is a defini
tion or an allusion. For declarations occurring out ide a block, there are
three possibilitie :

1. If extern i pre ent. the declaration is an allu ion. It is illegal to in
clude both extern and an initializer.

2. If extern i not present and the declaration includes an ini(ializer, the
declaration i a definition.

(continues)

www.manaraa.com

228 Chapter 7

Box 7-3 (continued):

3. If extern i not present and the variable is not initialized, a "com
mon" definition (a in FORTRAN) is emitted. If, in the entire set of
ource file, there i one definition and one or more common defini

lion of a variable, the common definitions become allusions. If
there are no real definitions and only common definitions, the linker
it elf provide a definition for the variable and resolves the common
defmition a if they were allusions.

The UNIX method i imilar to the ANSI method. The essential differ
ence i that the ANSI method decides whether to make a tentative
definition a real definition or an allusion based on whether any definitions
exi t in the current . ource file. The U IX method delay this decision
until link time 0 that it can ee if the variable is defined in other mod
ule .

A Portable Strategy

If you want your programs to run on a wide range of computer , you
should use the following method, which is compatible with the ANSI
Standard, the K&R standard, and UNIX compiler .

- To define a global variable, omit the extern keyword and include an
initializer.

- To allude to a global variable, include extern but omit an initializer.

For instance, to definej in header filefoo .1! and reference it in file prog.c,
you would write

Filefoo.h:

int j=O i

File prog.C:

extern int j ;
foo ()
{

www.manaraa.com

Storage Classes 229

7.4 The register Specifier

The register keyword enables you to help the compiler by giving it suggestions
about which variables should be kept in registers. To understand the purpose of
register variables, it is necessary to understand how registers work in computers.

Every computer has a limited number of registers, which are storage areas within
the CPU. Each register is capable of holding a unit of data (typically two or four
bytes) and arithmetic calculations are processed using these registers. For exam
ple, on a hypothetical machine the simple statement

j = k+m;

might cause the compiler to load two registers, call them rO and rl, with the
values stored in k and m. The computer then adds the two registers and writes
the result to the memory location occupied by j.

Operations involving registers are generally faster than memory operations. If
you could store every variable in its own register, your program would run
somewhat faster. Unfortunately, computers usually have far fewer registers than
there are variables. As a result, the compiler must try to figure out the optimal
strategy for assigning values to registers so as to minimize memory accesses.
This is one of the most difficult jobs compilers perform, and it is often what
separates a good compiler from a bad one.

The register keyword is designed to help the compiler decide which variables to
store in registers. However, it is only a hint, not a directive-the compiler is free
to ignore it. The degree of support for register varies widely from one compiler
to another. Some compilers store all variables defined as register in a' register
until all of the computer's registers are filled. Other compilers ignore register
altogether. Still others contain some type of intelligence that tries to determine
whether it really is best to store a register variable in a register. All of these
variations are within the ANSI Standard.

Since a variable declared with register might never be assigned a memory
address, it is illegal to take the address of a register variable (registers are not
addressable). This is true regardless of whether the variable is actually assigned
to a register. You should get a compile error if you ever try to take the address of
a variable declared with register.

A typical case where you might use register is when you use a counter in a loop.
In fact, we can rewrite our strlen() example from Chapter 6 to make use of the
register feature.

www.manaraa.com

230

int strlen(p
register char *p;
{

register int len 0;

while (*p++)
len++;

return len;

Chapter 7

Note that this does not guarantee that p or len will be kept in registers throughout
the duration of the function's execution, but it makes it more likely. In theory,
there is no limit to the number of variables that you can declare with register. In
practice, however, compilers recognize only the first n register declarations.
After that, they interpret a register declaration as a regular auto declaration.
You should read the documentation for your particular compiler to find out how
you can best utilize the register keyword.

Box 7-4: ANSI Feature - The canst Storage-Class
Modifier

The const keyword, borrowed from the C++ language developed by
Bjarne Strou trup, pecifie that the variable may not be modified in any
way following it initialization. For in tance, after declaring str[j ,

const char str[lO) = UConstant ";

you cannot change any of the value in the array slr[J. The statement

str[O) = ' a ';

would be illegal and hould be reported a an error by the compiler. The
rule, however, doe not necessarily apply to non-const pointer that point
to const object . If you make the additional declaration

char *p = &str[S) ;

then the tatement

*p = ' m';

mayor may not be legal, depending on the compiler. Ideally, thi hould
be illegal, but in many cases it is impo ible for the compiler to diagno e
this error.

(continues)

www.manaraa.com

Storage Classes 231

Box 7-4 (continued):

You can u e const in place of a #define directive. For in tance,

const long double pi = 3 . 14 159265 35897932385;

One unu ual a pect concerning the const keyword is that it may appear
between the pointer ymbol (*) and the variable name, as in

int *const canst_ptr i

Thi mean that the pointer const yfr i a con tant - it must point to the
arne object a long a it exi t. Contrast thi to the imilar-Iooking

declaration

which ay that the object which pllo_to_const point to cannot change.
pll·_to _ const it elf can be a igned a different addre ,although it must be
an addre of an object declared with con t. That i , pll·_to Jons(can
only point to object of type const int.

The main purpo e of const i to en ure that read-only data is not modi
fied. This i particularly u eful when pa ing pointer argument to
function. By declaring the argument with const, you can en ure that the
called function will not change the object pointed at by the pointer. In the
following example, the declaration of q a a pointer to a const object
guarantee that the strcpy() function will not change the object that q
point to.

char *strcpy (p , q)
char *P i
canst char *q i

The const feature is a1 0 u eful to some computer manufacturers in
determining which part of data can be "burned" into ROM (Read-Only
Memorie). ROMs are e ential for sy tern that do not have ome other
torage medium, uch a di k torage, available. In addition, ROMs are

con iderably less expensive than read- and-write memory board.

www.manaraa.com

232 Chapter 7

Box 7-5: ANSI Feature - The volatile Storage
Class Modifier

The volatile keyword , which is not supported by older compiler , informs
the compiler that the variable can be modified in way unknown to the C
compiler. Thi u ually applies to variable that are mapped to a particular
memoryaddre (i.e., device register). In the e cases, it is crucial that an
expression or a erie of statement be executed exactly a they are
written rather than being reordered for optimization purpo e. For in-
tance, suppo e KEYBOARD in the following function is a device register

that accept characters from the keyboard.

vo i d get_two_kbd_chars ()
{

extern char KEYBOARD ;
char cO , cl ;

cO KEYBOARD ;
cl KEYBOARD ;

The purpo e of the function is to read a character from the keyboard and
store it in cO, then read the next character and store it in d. However, the
C compiler, unaware that the value of KEYBOARD can be changed out
side the block, is likely to tore the value of KEYBOARD in a register and
then as ign that regi ler to cO and d. In other word , it will compile the
program as if il had been written

void get_two_kbd_chars ()
{

extern char KEYBOARD ;
char cO , cl
register char temp ;

temp = KEYBOARD ;
cO temp ;
cl = temp ;

Obviou Iy, this i not what wa intended ince the arne character will be
a igned to both cO and d. To en ure that KEYBOARD is read twice, you
mu t declare it a volatile:

extern volatile char KEYBOARD ;

(collfil1l1es

www.manaraa.com

Storage Classes 233

Box 7-5 (continued):

Another ituation where normal optimization technique can change the
meaning of a program is in loop-invariant expre ion . For in tance,
u ing KEYBOARD again, suppo e we have the function

void read_ten_chars ()
{

extern char KEYBOARD ;
int x ;
char c ;

for (x=O ; x < 10 ; x ++)
{

c = KEYBOARD ;
copy (c) ;

The purpo e of the function is to read 10 ucce ive characters from the
keyboard and pass each to a function called copy(). To the compiler,
however, it looks Like an inefficient program becau e c will be assigned
the arne value iO times. To optimize the program, the compiler may
translate it as if it had been written like thi :

extern char KEYBOARD ;
int Xi
char C i

c = KEYBOARD ; /* The inva riant expres sion is
removed from the loop. * /

for (x=O ; x < 10 ; x++)
copy { c)i

A a re ult, the arne character is sent to copy() each time. Once again,
declaring KEYBOARD with volatile en ure that the expre ion i not
extracted from the loop.

The volatile modifier is often u ed in a ca t expre ion. The following
tatement a igns the content of hexadecimal addre 20 to the variable

c. The volatile keyword in the ca t ensure that the as ignment will not
be optimized in any way.

c = (* {volatile char *) OX20)i

www.manaraa.com

234 Chapter 7

7.5 Summary of Storage Classes
So far we have described the semantics of storage classes-how they affect
variables. But we have glossed over some of the details about syntax-how
storage classes are specified. In this section, we summarize the ANSI rules for
the syntax and semantics of the storage-class keywords.

There are four storage-class specifiers (auto, static, extern, and register) and
two storage-class modifiers (const and volatile). Any of the storage class
keywords may appear before or after the type name in a declaration, but by
convention they come before the type name. The semantics of each keyword
depends to some extent on the location of the declaration. Omitting a storage
class specifier also has a meaning, as described below. Table 7-1 summarizes the
scope and duration semantics of each storage class specifier.

auto

static

extern

register

The auto keyword, which makes a variable automat
ic, is legal only for variables with block scope. Since
this is the default anyway, auto is somewhat super
fluous and is rarely used.

The static keyword may be applied to declarations
both within and outside a function (except for
function arguments), but the meaning differs in the
two cases. In declarations within a function, static
causes the variable to have fixed duration instead of
the default automatic duration. For variables declared
outside a function, the static keyword gives the
variable file scope instead of program scope.

The extern specifier may be used for declarations
both within and outside a function (except for
function arguments). For variables declared within a
function, it signifies a global allusion. For declara
tions outside a function, extern denotes a global
definition. In this case, the meaning is the same
whether you specify extern or not.

The register keyword may be used only for variables
declared within a function. It makes the variable au
tomatic but also passes a hint to the compiler to store
the variable in a register whenever possible. You
should use the register keyword for automatic vari
ables that are accessed frequently. Compilers support
this feature at various levels. Some don't support it at
all, while others support as many as 20 concurrent
register assignments.

www.manaraa.com

Storage Classes

omitted

const

volatile

~
Declared

Storage
Class
Specifier

auto or
register

static

extern

No storage-
class specifier
present

235

For variables with block scope, omitting a storage
class specifier is the same as specifying auto. For
variables declared outside of a function, omitting the
storage class specifier is the same as specifying ex
tern. It causes the compiler to produce a global
definition.

The const specifier guarantees that you cannot
change the value of the variable.

Declaring a variable with the volatile specifier causes
the compiler to tum off certain optimizations. This is
especially useful for device registers and other data
segments that can change without the compiler's
knowledge.

Outside Within a Function
a Function Function Arguments

scope: block scope: block
NOT ALLOWED

duration: automatic duration: automatic

scope: file scope: block
NOT ALLOWED

duration: fixed duration: fixed

scope: program scope: block

duration: fixed duration: fixed NOT ALLOWED

scope: program scope: block :;cope: block

duration: fixed duration: dynamic duration: automatic

Table 7-1. Semantics of Storage-Class Specifiers.

www.manaraa.com

236 Chapter 7

The syntax for storage-class keywords is rather loose, allowing some declara
tions that have little or no meaning. For example, it is legal to declare a variable
with both register and volatile, although it is unclear how a compiler would
interpret it. The only real syntactic restriction is that a declaration may include
at most one storage-class specifier. But either or both modifiers may be used.
The following, for example, is perfectly legal and even has a reasonable mean
ing:

extern canst volatile char real time_clock;

It is an allusion to a variable of type char that is both const and volatile.

7.6 Dynamic Memory Allocation

Fixed variables provide a means for reserving memory for the duration of a
program, while automatic variables cause the system to allocate memory when
each block is entered. Both of these approaches assume that you know how
much memory you need ahead of time when you write the source code. Fre
quently, however, the amount of memory required by a program hinges on the
input. For example, consider the bubble _sort() function in the previous chapter.
Suppose you want to write another function that reads a list of numbers entered
from the keyboard and then calls bubble _sort() to put them in order. To make
the function as useful as possible, it should work no matter how many numbers
you enter. But if the amount of input varies from one execution to another, how
large an array should you declare to store the input?

There are two solutions to this problem. The simplest is to pick a maximum
value and declare an array of that size. For instance, if you decide to set a limit
of 100 input values, you would declare a 100-element array, as shown in the
example on the following page.

www.manaraa.com

Storage Classes

#include <stdio.h>
#define MAX ARRAY 100

main()
{

extern void bubble_sort();
int list[MAX_ARRAY], j, sort_num;

printf("How many values are you going to enter? ");
scanf("%d", &sort_num);
if (sort_num > MAX_ARRAY)
{

printf("Too many values -- %d is the maximum\n",
MAX_ARRAY) ;

sort_num = MAX_ARRAY;

for (j=O; j < sort_num; j++)
scanf ("%d", &list [j]);

bubble_sort (list, sort num);
exit (0);

237

There are two basic problems with this solution. First, you need to set an
arbitrary maximum. This isn't good because there may be a future time when
you want to exceed this limit. The second, related problem is that the higher the
maximum, the more memory is wasted. If you declare an array with 100 4-byte
ints but use only ten of them, you are wasting 360 (90*4) bytes. 360 wasted
bytes isn't too bad, but suppose you set the maximum at 1000. Then the number
of wasted bytes would be 3,960, or almost 4K. On a small computer, this is a
significant amount of memory.

The other solution takes advantage of runtime library functions that enable you
to allocate memory on the fly. There are four dynamic memory allocation
functions:

malloc()

callocO

realloc()

freer)

Allocates a specified number of bytes in memory.
Returns a pointer to the beginning of the allocated
block.

Similar to mal/oc(). but initializes the allocated bytes
to zero. This function also allows you to allocate
memory for more than one object at a time.

Changes the size of a previously allocated block.

Frees up memory that was previously allocated with
malloc(), calloc(). or realloc().

www.manaraa.com

238 Chapter 7

Each of these functions is described in detail in Appendix A. The following
function shows how you might use malloc() to get space for data to sort.

#include <stdio.h>

main()
{

extern void bubble_sort();
int *list, sort_num, j;

printf("How many numbers are you going to enter?");
scanf("%d", &sort_num);
list = (int *) malloc(sort_num * sizeof(int));
for(j=O; j < sort_num; j++)

scanf("%d", list + j);
bubble_sort(list, sort num);
exit (0);

The argument to mal/oc() is the size in bytes of the block of memory to be
allocated-in this case, the number of elements times the size of each element.
mal/oc() returns a pointer to the beginning of the allocated block. We cast the
result to a pointer to an int because on most older compilers mal/oc() returns a
pointer to a char (see Box 7-6). Using cal/ocO, the storage allocation statement
would be

list = (int *) calloc(sort_num, sizeof(int))i

The cal/oc() function takes two arguments: the first is the number of objects to
reserve memory for, and the second is the size of each object.

Note that the functions using mal/oc() and cal/oc() depend on the fact that all the
elements are stored contiguously. If they weren't, the expression list + j would
not necessarily retrieve the next value. The only reason they are stored together
is that they are allocated in a single block. If you were to allocate each element
individually, the operating system would be free to spread the elements around.
For instance, the statements

pl (int *) malloc(sizeof(int))i

p2 (int *) malloc(sizeof(int))i
p3 (int *) malloc(sizeof(int))i

allocates memory for three ints, but there is no guarantee about the relative
locations of the three objects. pi might point to address 10,000, while p2 points
to address 5,000. Therefore, you cannot allocate memory for each individual
element and expect them to be contiguous. You must know ahead of time the
total size of the block that is required. There is a technique to get around this
limitation called a linked list. We describe linked lists in the next chapter.

www.manaraa.com

Storage Classes 239

Box 7-6: ANSI Feature - Generic Pointers

The memory allocation functions are implemented differently in the
ANSI Standard than in the K&R standard and most previou ver ion of
C. Prior to the A SI tandard , the memory allocation functions would
return a pointer to a char that designated the beginning of the allocated
region. It was the programmer 's responsibility to ca t the returned point
er to a poi mer of the correct type. The ANSI version make use of the
void data type by returning a pointer to a void. The void pointer i a
generic pointer that is automatically cast to the correct type when it i
a igned a pointer value. The following example show how the new
ver ion of mafloc() differs from the old ver ion.

Old Call to maliocO

int num , *pt ;

pt (int *) malloe (sizeof(num)) ;

ANSI Call to maliocO

#inelude <stdlib . h>

int num , *pt ;

pt malloe(sizeof(num)) ;

You do not need to cast the function re ult in the A SI ver ion. The ca t,
though redundant in the A SI ver ion, i not illegal , 0 old code will still
work with the new memory-management function . You mu t, however,
include the header file stdlib.h becau e it contain function prototype
(de cribed in Chapter 10). Becau e the new syntax, without the ca t, will
not work on older compiler , we u e the oLd ver ion in our example .

www.manaraa.com

240 Chapter 7

Exercises

1. For all of the following declarations, state which ones are definitions and
which ones are allusions:

int j;
float x = 1.0;
extern char *p
static int a;

"string";

char *fl(argl, arg2
register int argl;
double arg2;
{

extern float x;
extern char *p2;
static long int big_int;
register long rl;
unsigned ul;

int j 0;

2. Write declarations for the following. Include braces to make it clear
whether the declaration appears inside or outside a block.

a) An automatic local int.
b) A fixed local float.
c) A global pointer to a char, initialized with a null pointer.
d) An int with file scope.
e) A register int argument.
f) A constant double.
g)
h)
i)

A constant pointer to a double.
A pointer to a constant char.
A volatile int.

www.manaraa.com

Storage Classes 241

3. What are the initialized values of the variables in the following program?

Also identify all of the following declarations as definitions, tentative defi

nitions, or allusions.

static int s = 2;
int x = 3;
extern int xl;

main ()

static float j = x + 5;
float jl = x + xl;
static float x2;
float x3;
register int s2;

extern int x4 3

4. Write a function that prints out n asterisks, where n represents the number
of times it has been called. If it is called four times, for instance, the output

will be

*
**

www.manaraa.com

Chapter 8

Structures and Unions

Art and science cannot exist but in minutely

organized particulars. - William Blake, To the Public

Arrays are good for dealing with groups of identically typed variables, but they
are unsatisfactory for managing groups of differently typed data. To service
groups of mixed data, you need to use an aggregate type called a structure.
(Other languages, such as Pascal, call this data type a record.) Another aggre
gate type, called a union (similar to a variant record in Pascal), enables you to
interpret the same memory locations in different ways.

8.1 Structures
We are all familiar with the ubiquitous forms that ask for our name, date of birth,
and social security number. The purpose of this information is usually obscure,
but we can assume that, like most other information, it eventually finds its way
into a computer memory bank. Years later, it comes back to haunt us when we
fail to pay a parking ticket or when we apply for a loan. It is reasonable to ask
how this not-so-innocuous information is stored in the computer.

www.manaraa.com

Structures and Unions 243

The first piece of information (your name) is clearly a character array. The
second and third pieces of information can be treated as either character arrays or
integers, or even as arrays of integers. For this discussion, we treat the date as
three integers, one each for day, month, and year. We treat the social security
number as an II-element character array (ten characters for digits and one for the
terminating null character). You cannot put all of the information in a single
array because arrays contain only one type of data. You can, however, store this
information in separate variables. For instance, you might write

char name[19], ssnum[ll];
short day, month, year;

You could then enter data with the following assignments:

strcpy(name, "John Doe" I;
strcpy(ssnum, "0132222456" I;
day = 26;
month = 11;
year = 1957;

Storing the data in this fashion gets the information into the computer but creates
a strange organization. The information about one person is scattered about
memory instead of being grouped together. The arrangement becomes even
worse if you adjust the data structure to accommodate information about more
than one person. In this case, you would need to make each piece of information
an array. To store data about 1000 people, you would write

char name[1000] [19], ssnum[1000] [11];
short month[1000], day[1000], year[1000];

A more natural organization would be to create a single variable that contains all
three pieces of data. C enables you to do this with a data type called a structure.
A structure is like an array except that each element can have a different data
type. Moreover, the elements in a structure, called fields or members, have
names instead of subscript values. We like to think of structures as arrays with
personality. To declare a structure to hold one's vital statistics, you would write

struct vitalstat

char vs_name[19] , vs ssnum[ll];
short vs_month, vs_day, vs_year;

struct vitalstat vs;

www.manaraa.com

244 Chapter 8

There are two declarations: the first declares a structure template called vitalstat;
the second declares an actual variable called vs with the vitalstat fonn. It is a
good idea to include a unique prefix for each member name so that the members
are not confused with members of other structures that may have similar names.
The storage for vs on our machine is shown in Figure 8-1. Note that the fields
are stored consecutively in the order they are declared. Contiguity, however, is
not required. As we describe later in this chapter, it is possible for structures to
contain gaps between members.

1000

1004

1008

101C

1020

1024

1028

102C

1030

Figure 8-1. Memory Storage for the vs Structure.

The name vitalstat is called a tag name. It represents a new, user-defined data
type, but no storage is allocated for it. You can use the tag name over and over
again within a program to create additional variables with the same fields. For
instance, you could write

struct vitalstat vsa[lOOOl, *pvs;

The variable vsa[] is an array with 1000 members; each member is itself a
structure containing the fields vs _ name[] , vs _ssnum[] , vs _day, vs _month, and
vs year. The variable pvs is a pointer to a structure with these fields. You could
make the assignment

www.manaraa.com

Structures and Unions 245

pvs = &vsa[lO];

wQich makes pvs point to element 10 of the array.

The syntax of a structure declaration can be fairly complex. The form of
declaration we have used-declaring a tag name and then using the tag name to
declare actual variables-is one of the most common. It is also possible to
declare a structure without using a tag name, as in

struct
{

char vs_name[19], vs_ssnum[ll];
short vs_month, vS_day, vs_year;

vs;

This is useful if you want to declare a single structure type to be used in one
place only. You can also declare a tag name and variables together:

struct vitalstat
{

char vs_name[19], vs_ssnum[ll];
short vs_month, vs_day, vs_year;

vs, *pvs, vsa[lO];

A final method, which is the one we use most often, is to define a typedef name.
For instance,

typedef struct
{

char vs_name[19], vs_ssnum[ll];
short vs_month, vs_day, vs_year;

VITALSTAT;

In this case, the type VITALSTAT represents the entire structure declaration,
including the struct keyword. Note that we use all capital letters for the typedef
name to keep it distinct from regular variable names and tag names. To declare a
variable with this structure, you would write

VITALSTAT vS;

A tag name or typedef enables you to define the data structure just once even
though you may use it over and over again. Typically, structure definitions are
placed in a header file where they can be accessed by multiple source files.

www.manaraa.com

246 Chapter 8

8.1.1 Initializing Structures

You can initialize a structure in the same manner as you initialize arrays. Follow
the structure variable name with an equal sign, followed by a list of initializers
enclosed in braces. Each initializer should agree in type with the corresponding
field in the structure. For instance,

VITALSTAT vs = { "George Smith", "002340671",
3 , 5, 1946,

} ;

The ANSI Standard allows you to initialize both automatic and fixed structures,
but the K&R standard and most older C compilers allow you to initialize only
fixed structures. Also, you may not include an initializer in a declaration that
contains only a tag name or is a typedef since these types of declarations create
templates but do not allocate storage. The following, for instance, is invalid:

typedef struct
{

int a;
float b;

s = { 1, 1.0 }; /* Initializer is not allowed
* in a typedef
*/

8.1.2 Referencing Structure Members

Having declared a structure, you need a way to access the fields. There are two
methods, depending on whether you have the structure itself or a pointer to the
structure. Each method uses a special operator. If you have the structure itself,
you can enter the structure name and field name separated by the dot (.) operator.
For instance, to assign the date March 15, 1987 to vs, you would write

vS.vs month = 3;
vs.vs_day = 15;
vS.vs year = 1987;

The referenced field expression is just like any other variable, so you can use
vs. vs _month anywhere you would normally use a short variable. The following
statement, for instance, is perfectly legal:

if (vs.vs_month > 12 II vs.vs_day > 31)
printf("Illegal Date.\n");

www.manaraa.com

Structures and Unions 247

The other way to reference a structure member is indirectly through a pointer to
the structure. Declaring pointers to structures is the same as declaring pointers to
other kinds of objects:

VITALSTAT *PVSi /* Declare a pointer to a
structure of type VITALSTAT */

To reference a member through a pointer, use the right-arrow operator (-»,
which is formed by entering a dash followed by a right angle bracket. For
example,

if (pvs->vs_ffionth > 12 I I pvs->vs_day > 31)
printf("Illegal Date.\n");

The right-arrow operator is actually a shorthand for dereferencing the pointer
and using the dot operator. That is,

is the same as

(*pvs) .vs_day

8.1.3 Arrays of Structures

Since a structure is a data object, it is possible to create arrays of structures. An
array of structures is declared by preceding the array name with the structure
typedef name:

VITALSTAT vsa[10];

The following function counts the number of people in a particular age group.
We assume that the array of structures has already been filled with data and a
pointer to the beginning of this array is passed as an argument. The second
argument is the number of elements in the array. We also assume that the
include file called v stat.h contains the declaration of VITALSTAT.

www.manaraa.com

248 Chapter 8

#include "v stat.h" /* Contains declaration of

* VITALSTAT typedef name.
*/

int age count (vsa, size, low age, high_age,
current_year)

VITALSTAT vsa[];
int size, low_age, high_age, current_year;

int i, age, count = 0;

for (i = 0; i < size; ++i)

age = current_year - vsa[i] .vs_year;
if (age >= low_age && age <= high_age)

count++;

return count;

As we noted in Chapter 6, indexing into an array is not as efficient as using a
pointer to an array since indexing involves an additional multiplication. The
computer must multiply the index by the size of the array element and add the
resulting offset to the base of the array. You can avoid some of this arithmetic by
assigning a pointer to the base of the array. Then you need only increment the
pointer for each iteration. This is an optimization called strength reduction,
which is performed automatically by some compilers.

Rewriting agecount() using pointers and the -> operator, we get the function
shown on the following page.

www.manaraa.com

Structures and Unions 249

#include "v stat.h" /* Contains declaration

* of VITALSTAT typedef name.
*/

int agecount(vsa, size, low_age, high_age,
current_year)

VITALSTAT vsa[];
int size, low_age, high_age, current_year;

int i, age, count = 0;

for (i = 0; i < size; ++vsa, ++i)

age = current_year - vsa->vs_year;
if (age >= low_age && age <= high_age)

count++;

return count;

The only difference between this version and the earlier version is that we
increment vsa directly instead of incrementing an index variable. The declara
tion of vsa remains the same due to C's array-passing conventions. Recall from
Chapter 6 that C converts an argument declared as an array into a pointer to the
array type. In both versions, therefore, vsa is a pointer to a VITALSTAT structure.
You could also declare it as

VITALSTAT *vsa;

Note that pointer scaling enables us to use the increment operator to move the
pointer down the array. In this case, vsa points to a 36-byte structure, so it is
incremented 36 bytes on each iteration.

One stylistic problem with the pointer version of agecount() is that it changes the
value of the formal parameter vsa. This is perfectly legal, but it is a dangerous
practice in general because it makes the function less maintainable. The problem
is that you or another programmer may expand the function later on and llse vsa
again, expecting that it will still point to the beginning of the array. But instead,
it will point to the last element of the array.

www.manaraa.com

250 Chapter 8

Maintaining a program is easier if you can assume that formal parameters main
tain their initial value throughout the function. In this particular case, assigning
to formal parameters isn't too big a problem because the function is small and
relatively simple. For larger, more complex functions, however, you should
avoid assigning into formal parameters. The simplest solution is to create tem
porary variables initialized with the values of the formal parameters, as shown in
the following version of agecount():

#include "v stat.h" /* Contains declaration

* of VITALSTAT typedef name.
*/

int age count (vsa, size, low_age, high_age,
current_year)

VITALSTAT vsa[];
int size, low_age, high_age, current_year;

int age, count 0;
VITALSTAT *p = vsa, *p_last

for (
{

p < p_last; ++p)

&vsa[size];

age current_year - p->vs_year;
if (age >= low_age && age <= high_age)

count++;

return count;

8.1.4 Nested Structures
When one of the fields of a structure is itself a structure, it is called a nested
structure. Nested structures are common in C programming because they enable
you to create data hierarchies. For instance, we can rewrite the VITALSTAT
structure as

typedef struct
{

char vs_name[19] , vs ssnum[ll];
struct

short vs_day;
short vs_month;
short vs_year;
vs birth date;

- -
VITALSTAT;

www.manaraa.com

Structures and Unions 251

We replace the three fields representing the date of birth with a structure contain
ing these fields. The storage allocation is the same, but instead of accessing the
year as

vs.vs_year

we access it as

vs.vs birth_date.vs_year

The second reference is more readable since vs_birth_date.vsyear is more
meaningful than vs year.

Another way to declare nested structures is with typedefs. We can rewrite the
previous declaration as

typedef struct
{

char day;
char month;
short year;
DATE;

typedef struct
{

char vs_name(19), vs ssnum[ll);
DATE vS_birth_date;
VITALSTAT;

VITALSTAT vsa(1000);

Note that we also changed day and month to be chars because all possible values
for these members can be represented in eight bits. Having defined a new
structure type called DATE, we can put it in a header file (date.h) and use this
structure template in other ways. For this reason, we did not include the vs_
prefix in the field names. For instance, in another program we might write

'include "date.h"

typedef struct
{

DATE d;
char event(20);
CALENDAR;

CALENDAR holiday = {
{ 12, 25, 1986 },
{ "Christmas" }

} ;

www.manaraa.com

252 Chapter 8

Note that when you initialize a nested structure, you should enclose it in braces,
just as you would if you were initializing a multidimensional array. Theoretical
ly, there is no limit to the number of levels you may nest structures. Eventually,
though, the field references become rather hard to read since they contain all of
the intermediary structures.

Box 8-1: ANSI Feature - struct and union Name
Spaces

TheANSIStandardrequire Ccompiler to create a eparatenamillgspace
within each tructure and union so that two or more structures or union
can have component with the same name. For example,

struct sl {
int a , b i

} i

struct s2 (
float a , b ;

} ;

This feature is an exten ion to the K&R standard, 0 it may not be available
on older compilers. Moreover, for tyli tic reason. you hould avoid
giving different variables the arne name unles there i a very good rea on
for doing o.

Tag name ,member names, and variable name are all di tinct, 0 a tag. a
member, and a variable may have the ame name without a conflict ari ing.
The following, for example, i legal:

struct x { int X i } X i

Again, you hould be careful not to abu e thi capability.

8.1.5 Self-Referencing Structures
A tructure or union may not contain in tance of it elf, but it may contai
pointer to in tance of it elf. For example,

st r uct S (

int a , b ;
float c ;
struct s *pointer_to_s i

) ;

/* This is legal */

www.manaraa.com

Structures and Unions 253

As this example illustrates, you are pennitted to declare pointers to structures
that have not yet been declared. This feature enables you to create self-referen
tial structures and also to create mutually referential structures and unions, as
shown in the following example.

struct sl {
int a;
struct s2 *b;

} ;

struct s2 {
int a;
struct sl *b;

} ;

Each structure contains an integer as the first component and a pointer to the
other structure as the second component. The compiler allows you to declare a
pointer to struct s2 before s2 is ever declared. This situation, known as forward
referencing, is one of the few instances in the C language where you may use an
identifier before it has been declared.

Note that forward references are not pennitted within typedefs. The following
produces a syntax error:

typedef struct
{ int a;

FOO *p; /* Error because FOO is not
* yet declared.
*/

} FOO;

8.1.6 Alignment of Structure Members
Some computers require that any data object larger than a char must be assigned
an address that is a mUltiple of a power of two. For instance, the Motorola
68000 CPU requires that all objects larger than a char be stored at even address
es. Nonnally, these alignment restrictions are invisible to the programmer.
However, they can create holes, or gaps, in structures. Consider how a compiler
would allocate memory for the following structure:

struct ALIGN EXAMP

char mem1;
short mem2;
char mem3;
sl;

www.manaraa.com

254 Chapter 8

If the computer has no alignment restrictions, s1 would be stored as shown in
Figure 8-2.

1001 1003

1000 mem1 I mem2 I mem3

1004

Figure 8-2. Allocation Without Alignment Restrictions.

If the computer requires objects larger than a char to be stored at even addresses,
s1 would be stored as shown in Figure 8-3. This storage arrangement results in a
I-byte hole between mem1 and mem2 and following mem3. The trailing gap is
necessary so that in an array of ALlGN _ EXAMP structures, each element would
begin at an even address.

1001 1002

1000 mem1 ...
h91e mem2 ,I" J

,/ / ,/
mem3 ,,I" hdle ,

,/ " ,/ ,/ "~I 1004

Figure 8-3. Allocation with Alignment Restrictions.

Note that you can avoid these holes by rearranging the member declarations:

struct ALIGN EXAMP

char meml, mem3;
short mem2;
sl;

Because structures can be allocated differently on different machines, you should
be careful about accessing them in a portable manner. One way to avoid porta
bility problems is to make sure that all members are naturally aligned. Natural
alignment means that an object's address is evenly divisible by its size. For
example, all 2-byte objects would have an even address and all 4-byte objects
would have addresses divisible by four. Natural alignment is the strictest align
ment requirement that any computer imposes, so if all members of a structure are
naturally aligned, the structure will be portable from one computer to another.
You can control the alignment of members by using bit fields, as described in the
next section. You can also promote portability by accessing members by their
names rather than through unions or offsets from pointers.

www.manaraa.com

Structures and Unions 255

Box 8-2: ANSI Feature - offsetof Macro

The A SI Standard provide a method of determining the byte off et of
any non-bitfield tructure m mber. The macro lake two argument : the
type of the tructur and the memb r name:

offsetof(type. member-name)

and expands to an integral byt off et. The exact type of the re ulr is
pecified by a macro called ize _ t thal i defined in the stddefh header file.

Con ider the following example:

#include <stddef . h>

typedef struct
{

char widgetName[MAX_NAME) ;
int widgitCount
enum WIDGET TYPE widgetType ;

WIDGET_INFO ;

size t typeOffset offsetof(WIDGET_INFO ,
widgetType);

The variable t)'peOjfset now contains an integer value repre enting the
off et of member widgerType. Thi information can be very helpful in
determining how a compiler align member.

Though this feature i an exten ion to the K&R standard, many compiler
have upported ome form of thi con truct for year .

8.1.7 Bit Fields

The smallest data type that C supports is char, which is usually 8 bits long. But
in structures, it is possible to declare a smaller object called a bit field. Bit fields
behave like other integer variables, except that you cannot take the address of a
bit field and you cannot declare an array of bit fields.

The syntax for declaring a bit field is shown in Figure 8-4.

www.manaraa.com

256

---.1 base I---r----------~r_--~ type

bit field
name

Chapter 8

bit length

Figure 8-4. Syntax of Bit Field Declarations.

The base type may be int, unsigned int, or signed int. If the bit field is declared
as int, the implementation is free to decide whether it is an unsigned int or a
signed int. For portable code, use the signed or unsigned qualifier. (Many
compilers allow you to use enums, chars, and shorts as the base type.)

Bit fields may be named or unnamed. Unnamed fields cannot be accessed and
are used only as padding. As a special case, an unnamed bit field with a width of
zero causes the next structure member to be aligned on the next int boundary.

The bit length is an integer constant expression that may not exceed the length of
an int. On machines where ints are 16 bits long, for example, the following is
illegal:

int too_long: 17;

The compiler allocates at least a char's worth of memory and possibly more.
The precise number of bits allocated is implementation dependent, but the com
piler must allocate at least as many bits as are specified by the bit field length,
and the length must be an even multiple of chars. Consecutive bit fields are
packed into the allocated space until there is no room left. Assuming your
compiler allocates 16-bits for a bit field, the following declarations would cause
a, b, and c to be packed into a single 16-bit object (see Figure 8-5).

struct

int a 3;
int b 7;
int c 2;
s;

www.manaraa.com

Structures and Unions

Address

1000

1002

o 1 2 3 4 5 6 7 8 9

b

10 11 12 13 14 15

Figure 8-5. Storage of Three Consecutive Bit Fields.

257

However, each implementation is free to arrange the bit fields within the object
in either increasing or decreasing order, so a compiler might arrange the bit
fields as shown in Figure 8-6.

Address 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

;r:--:--=-....:::.r-::,:"""::"",,C :"""':"':"'::"""":"::b '':'''-'':'=-a--' 1000

1002

Figure 8-6. Alternative Storage of Three Consecutive Bit Fields.

Also, if a bit field would straddle an iot boundary, a new memory area may be
allocated, depending on your compiler. For instance, the declaration

struct

int a 10;
int b 10;
s;

might cause a new 16-bit area of memory to be allocated for b, as shown in
Figure 8-7. As a result, 32 bits would be allocated, even though only 20 are
used. If you are using bit fields to save storage space, you should try to arrange
the fields to avoid gaps.

Address

1000

1002

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a gap

b gap

Figure 8-7. Storage of Two Consecutive Bit Fields.

www.manaraa.com

258 Chapter 8

Box 8-3: Bug Alert - Passing Structures vs.
Passing Arrays

Passing tructure i not the arne a passing arrays. Thi incon i tency in
the C language can cau e confusion.

To pa an array in C, you simply specify the array name without a ub
cript. The compiler interpret the name as a pointer to the initial element

of the array 0 it really passes the array by reference. There i no way to
pa an array by value (except to embed it in a structure and pa the
tructure by value).

With tructures, however, the tructure name i interpreted a the entire
tructure, not as a pointer to the beginning of the tructure. If you u e the
arne yntax that you u e with array , therefore, you will get different
emantics. For example,

int ar[lOO] ;
struct tag st ;

func(ar); 1* Passes a pointer to the first
element of art] *1

func (st); 1* Passes an entire structure *1

The incon i tency follows through to the receiving ide. For example, the
following two array versions are the same:

func (ar)
int ar [) ;

func(ar
int *ar ;

1* ar is converted to a pointer
to an int *1

1* ar is a pointer to an int *1

But the following two tructure ver ion are very different:

func(st)
struct tag st ; 1* st is an entire

structure *1

func(st)
struct tag *st ; 1* st is a pointer to

a struct *1

www.manaraa.com

Structures and Unions 259

As the preceding discussion indicates, the implementation of bit fields varies
somewhat from one compiler to another. Consequently, you should use bit fields
with care-they are inherently nonportable. There are two situations where the
use of bit fields are valid: 1) when efficient use of memory or data storage is a
serious concern and 2) when you need to map a structure to a predetermined
organization. The second situation occurs when somebody else has defined a
structure that contains objects smaller than chars and you need to manipulate
this externally created structure.

As an example of using bit fields to save space, consider our DATE structure.
Since a day value cannot exceed 31 and a month value cannot exceed 12, we can
rewrite the DATE structure using bit fields as

struct DATE
{

} ;

unsigned int day 5;
month : 4;
year : 11;

Only 20 bits are needed for the three fields. Due to the bit field allocation rules,
however, some compilers would allocate 24 bits while others would allocate 32
bits. Figures 8-8 and 8-9 show two possible allocation schemes for an array of
DATE structures. Figure 8-8 assumes that the compiler packs bit fields to the
nearest char and allows bit fields to span int boundaries. Note that each array
element must begin at a char boundary. Figure 8-9 assumes that ints are 16 bits
and that the compiler does not allow bit fields to span int boundaries.

Address 0 5 9 15 28 31

1000 day month year day m
II' / 1111

/' /' ,/
1004 onth year 1111/1'/// day month ye

" II' II'
111111/" /1'

" / "I' / ,I ,/ 1111'"

1008
1,/,1,"",,/',111

day month
,/ /",,1111

ar ,1,1,," "" year 11'1" I"

11'/,11,/,1'/,1,1 1111 "" 1,,1
1111 / I"

11'1111 III I" I,ll / /

Figure 8-8. Storage of the DATE Structure with Bit Fields. This
figure assumes that the compiler packs bit fields to the
nearest char and allows fields to span int boundaries.

www.manaraa.com

260 Chapter 8

Address 0 5 9 15 26 31
[I [it 11111 11111 ,1,,1 [", [1,1 [III [I" I"

day month
,<,,11[1':,111[11:[[[[[1,:/,1[:

year ::::,11:::::,11:::::,1,:::::",:::::,[1

1000 [111,,11[1 [[[III [,/ Iflill

1111[[:[11[11';111111':,111,,1:,1[[1,11 ii' ,/',IIII[/" ,/
111',111[1',111111,1111",.,,111 I'IIIIIII',I!IIII'"!IIII',,.IIII',I['

1004 day month
'li~'J/ /,11 /,[1 [11111 year ""/,,/,I',,l'/"',II
1111',/'/[,111111'"1,,[1',,,111 I' ,[11 [III Jill 11,1

IIII l II" [111 ~[li,II/II/,II/,1',II'"

",tI;t,/':,i'::,i":,i' l,/,[I,I",tI',I,/'/,II',[[

1008 day month Jll11 [/ [111,[1,11111 year /[11111,/,11,/",11111',
111/ "rll',lllLL',,/,,11 jI[LI]11' ,I'" [III tllil

I [ILI',I"! 11/1['[1,[1 rII1111"[II'[I[III' •• ,,I',.ll'

Figure 8-9. Alternative Storage of the DATE Structure with Bit Fields.
This figure assumes that the compiler packs bit fields to
the nearest short and does not allow fields to span int
boundaries.

8.1.8 Passing Structures as Function Arguments

There are two ways to pass structures as arguments: pass the structure itself
(called pass by value) or pass a pointer to the structure (called pass by reference).
The two methods are shown in the following example.

VITALSTAT vs;

func (vs) ; /* Pass by value -- Passes an entire
* copy of the structure.
*/

func (&vs) ; /* Pass by reference -- Passes the
* address of a structure.
*/

www.manaraa.com

Structures and Unions 261

Passing the address of a structure is usually faster because only a single pointer
is copied to the argument area. Passing by value, on the other hand, requires that
the entire structure be copied. There are only two circumstances when you
should pass a structure by value:

• The structure is very small (i.e., approximately the same size as a
pointer).

• You want to guarantee that the called function does not change the
structure being passed. (When an argument is passed by value, the
compiler generates a copy of the argument for the called function. The
called function can only change the value of the copy, not the value of
the argument on the calling side. This is described in greater detail in
Chapter 9.)

In all other instances, you should pass structures by reference. (Note: passing
structures by value, though supported in almost all C compilers, is not part of the
original K&R standard. It is required by the ANSI Standard.)

Depending on which method you choose, you need to declare the argument on
the receiving side as either a structure or a pointer to a structure:

or

func{ vs)
VITALSTAT vs; /* Pass by value -- the argument

* is a structure .

func{ pvs
VITALSTAT *pvs;

*/

/* Pass by reference -- the
* argument is a pointer to
* a structure.
*/

Note that the argument-passing method you choose determines which operator
you should use in the function body-the dot operator if a structure is passed by
value and the right-arrow operator if the structure is passed by reference.

www.manaraa.com

262 Chapter 8

8.1.9 Returning Structures

Just as it is possible to pass a structure or a pointer to a structure, it is also
possible to return a structure or a pointer to a structure. (Returning a structure is
not supported in the original K&R standard but is a common extension supported
by most C compilers.) The declaration of the function's return type must agree
with the actual returned value. For example,

struct tag f ()
(

struct tag st;

/* Define a function that returns */
/* a struct */

return st; /* Return an entire struct */

struct tag *fl() /* Define a function that returns */
/* a pointer to a struct */

static struct tag pst;

return &pst; /* Return the address of a struct */

As with passing structures, you generally want to return pointers to structures
because it is more efficient. Note, however, that if you return a pointer to a
structure, the structure must have fixed duration. Otherwise, it will cease to be
valid once the function returns.

One situation where returning structures is particularly useful is when you want
to return more than one value. The return statement can only send back one
expression to the calling routine, but if that expression is a structure or a pointer
to a structure, you can indirectly return any number of values. The following
function, for instance, returns the sine, cosine, and tangent of its argument. The
functions sin(), cas(), and tan() are part of the runtime library. Each accepts an
argument measured in radians and returns the corresponding trigonometric value.
If the argument is too large, however, the results will not be meaningful.

www.manaraa.com

Structures and Unions 263

#include <stdio.h>
#include <math.h> /* include file for trig */

* functions */
#define too_large 100 /* Differs from one machine

* to another. */
typedef struct
{

double sine, cosine, tangent;
TRIG;

TRIG *get_trigvals(radian val
double radian_val;

/*

*

static TRIG result;

If radian val is too large, the sine, cosine
and tangent values will be meaningless.

*/
if (radian_val > TOO_LARGE)
{

printf("Input value too large -- cannot \
return meaningful results\n");

return NULL; /* return null pointer
* defined in stdio.h.
*/

result.sine = sin(radian_val);
result.cosine = cos(radian_val);
result.tangent = tan(radian val);
return &result;

8.1.10 Assigning Structures

Although it is not supported in the original K&R standard, most compilers (and
the ANSI Standard) allow you to assign a structure to a structure variable,
provided they share the same structure type. The code extract on the following
page shows some examples of structure assignments.

www.manaraa.com

264

struct {

sl
s2
ps
s2

s2;

int a;
float b;
sl, s2, sf(), *ps;

sf () ;
&sl;
*ps;

Chapter 8

This feature may not be available on older compilers. To assign structures using
older versions of C, you need to use the memcpy() runtime library function. See
Appendix A for more information about this function.

8.2 Linked Lists

In our examples up to now, we have used an array of structures to handle groups
of data. This is a valid approach when you know beforehand exactly how many
structures you are manipulating. When the number is unknown, however, arrays
can be extremely costly since they force you to allocate enough memory for the
worst-case situation. This memory is reserved and unavailable for other uses
even if you use only a fraction of the array elements. Moreover, if you need to
access more memory than you initially allocated, your program will fail.

The obvious solution is to be able to allocate memory for new structures as
needed. C allows you to do this through the runtime library routines malloc()
and calloc(), described in Chapter 7. But successive calls to these routines will
not guarantee that the structures will be placed contiguously in memory. What is
needed, therefore, is a technique for connecting all the structures together.

The most common way to do this is through a construct called a linked list. A
linked list is a chain of structures that are linked one to another, like sausages. In
the simplest linked-list scheme, each structure contains an extra member which
is a pointer to the next structure in the list.

www.manaraa.com

Structures and Unions

Revising our earlier vitalstat example to make a linked list, you would write

typedef struct vitalstat
{

char vs_name[19] , vs ssnum[ll];
unsigned int vs_day: 5,

vs_month : 5,
vs_year : 11;

struct vitalstat *vs next;
VITALSTAT;

265

Pictorially, a linked list looks like Figure 8-10. This is a singly linked list
because it goes in only one direction. There are also doubly linked lists, in which
each structure contains two pointers, one to the next element and one to the
previous element. The following discussion and examples, however, are con
fined to singly linked lists.

Figure 8-10. A Singly Linked List.

In a typical linked-list application, you need to perform the following operations:

• Create a list element

• Add elements to the end of a list

• Insert elements in the middle of a list

• Remove an element from a list

• Find a particular element in a list

Each of these tasks (except the last one) can be written as a self-contained and
generalized function that will work no matter how the structures are configured.

www.manaraa.com

266 ChapterS

8.2.1 Creating a Linked-List Element

To create a linked-list element, all you need to do is allocate memory for the
structure and return a pointer to this memory area.

#include "v stat.h"

ELEMENT *create list_element()

ELEMENT *p;

p = (ELEMENT *) malloc(sizeof(ELEMENT));
if (p == NULL)
{

printf("create list element: malloc failed.\n");
exit (1);

p->next NULL;
return p;

To make the function as general as possible, we use the name ELEMENT, which
gives no clue about the actual type of data being manipulated. For this function
to work for the vitalstat structure, we would need to include the following
typedefs in v _stat.h.

#define NULL (void *) 0

typedef struct vitalstat
{

char vs_narne[19] , ssnurn[ll];
unsigned int vs_day: 5,

vs_rnonth : 5,
vs_year : 11;

struct vitalstat *next;
VITALSTAT;

typedef struct vitalstat ELEMENT;

ELEMENT becomes synonymous with struct vitalstat. Note in the declaration of
create _list() that it returns a value of type ELEMENT *. Note also that you must
use a tag name rather than a typedef to declare the pointer next. This self-refer
encing is legal if you identify the structure by its tag name, but not if you
identify it by a typedef name. This is because the typedef name is not defined
until the end of the declaration.

www.manaraa.com

Structures and Unions 267

8.2.2 Adding Elements

The create_list _ element() function allocates memory, but it doesn't link the
element to the list. For this, we need an additional function, which we call
add _ element():

#include "v stat.h"

static ELEMENT *head

void add_element (e)
ELEMENT *e;
{

ELEMENT *p;

/* If the first element (the head) has not been
* created, create it now.
*/
if (head
{

head = e;
return;

NULL)

/* Otherwise, find the last element in the list */
for (p = head; p->next != NULL; P = p->next);

/* null statement */

p->next e;

This function has a number of interesting aspects worth noting. The variable
head serves as a pointer to the beginning of the linked list. It is declared with
file scope so that it will be available to a number of functions. However, all
functions that use head must exist in the same source file.

The purpose of the for loop is to find the last element of the list. It goes through
each element testing to see whether p.next is NULL or not. If not, p.next must
point to another element. When p.next does equal NULL, we have found the end
of the list and we end the for loop. The assignment

p->next = e;

appends a new structure to the end of the list. The argument, e, is a pointer to a
structure that has been allocated by the calling function.

www.manaraa.com

268 Chapter 8

To create a linked list containing ten vita/stat structures, you could write

#include "v stat.h"
static ELEMENT *head;

main ()
{

for (j=O; j < 10; ++j)
add_element (create list_element());

8.2.3 Inserting an Element

To insert an element in a linked list, you must specify where you want the new
element inserted. The following function accepts two pointer arguments, p and
q, and inserts the structure pointed to by p just after the structure pointed to by q.
(See Figure 8-11.)

/* Insert p after q */
#include "v stat.h"

void insert after(p, q)
ELEMENT *p, *q;
{

/*

*
*

Perform sanity check on arguments.
If p and q are the same or NULL, or if p
already follows q, report.

*/
if (p == NULL I I q == NULL I I p q I I

q->next == p)

printf("insert after: Bad arguments\n");
return;

p->next
q->next

q->next;
p;

www.manaraa.com

Structures and Unions 269

q g->next

BEFORE: I I ·1 ~I 1·1
q

AFTER: I

Figure 8-11. Linked-List Insertion.

8.2.4 Deleting an Element

Deleting an element in a singly linked list is a little trickier since you need to
find the element before the one you are deleting so that you can bond the list
back together after removing one of the links. You also need to use the freeO
function, described in Chapter 7, to free up the memory used by the deleted
element. Figure 8-12 illustrates the operation of the delete _ element() function.

p goner p->next->next

BEFORE: I 1·1 ~I 1·1 ~I 1·1
p p->next

AFTER: I 1·1 ~I 1·1

Figure 8-12. Linked-List Deletion.

www.manaraa.com

270

#include "v stat.h"

static ELEMENT *head;

void delete_element (goner
ELEMENT *goner;
{

ELEMENT *p;

if (goner == head)
head goner->next;

else
/* Find element preceding the one to be

* deleted
*/

Chapter 8

for (p = head; (p != NULL) && (p->next != goner);
p = p->next)

/* null statement */
if (p == NULL)
{

printf("delete element: can't find element in\
list. \n");

return;

p->next = p->next->next;

free (goner);

The right-arrow operator binds from left to right, so the expression

p->next->next

is evaluated as if it had been written

(p->next)->next

8.2.5 Finding an Element

There is no easy way to create a general-purpose findO function because you
usually search for an element based on one of its data fields, which depends on
the structure being used. To write a general-purpose findO function, you need to
use pointers to junctions, which are described in the next chapter.

www.manaraa.com

Structures and Unions 271

The following function, based on the vitalstat structure, searches for an element
whose vs _name field matches the argument.

#include N V stat.h N

static ELEMENT *head;

ELEMENT *find(name)
char *name;

for (p = head; p != NULL; P = p->next)
if (strcmp(p->vs_name, name) == 0)

return p;
return NULL;

8.3 Unions
Unions are similar to structures except that the members are overlaiq one on top
of another, so members share the same memory. For example, the following
declaration results in the storage shown in Figure 8-13.

typedef union
{

struct

char cl, c2;
s;

long j;
fl oat X;
U;

U example;

1002

x

Figure 8-13. Example of Union Memory Storage.

www.manaraa.com

272 Chapter 8

The compiler always allocates enough memory to hold the largest member, and
all members begin at the same address. The data stored in a union depends on
which union member you use. For example, the assignments

example.s.cl 'a';
example.s.c2 'b';

would result in the storage shown in Figure 8-14.

1000 1001 1002

'a' 'b'

1003

Figure 8-14. Storage in example Union After Assignment.

But if you make the assignment

example.j = 5;

it would overwrite the two characters, using all four bytes to store the integer
value 5.

Unions obey the same syntactic rules as structures. You can access elements
with either the dot operator or the right-arrow operator; you can declare bit
fields, and you can use tag names.

There are two basic applications for unions:

• Interpreting the same memory in different ways.

• Creating flexible structures (called variant records in Pascal) that can
hold different types of data.

8.3.1 Interpreting Data Differently

As ail example of interpreting data differently, consider the common communi
cations problem where data comes over the line byte by byte. Unions provide a
way of grouping bytes together so that they can be reconstructed into their
original form. For instance, suppose get_by teO is a function that returns a single
byte from a communications device. An eight-byte double value can be ex
tracted from the communications device through eight successive calls to
get_byte() as shown in the following function.

www.manaraa.com

Structures and Unions

union doub

} ;

char c[8];
double val;

double get_double()

extern char get_byte();
int j;
union doub d;

for (j=O; j < 8; j++)
d.c[j] = get_byte();

return d.val;

273

We store each successive character in the next element of c[]. Then when we
want the double value, we access the union using the val member.

One area of confusion among many C programmers is the difference between
conversions using unions and conversions using casts. Accessing a union
through different members does not affect the actual bits in memory in any way.
The compiler simply uses different interpretations for the bits. Likewise, a cast
does not affect the bits in storage. But instead of interpreting them differently, it
converts the value they represent into the target type. The following example
should make this clearer.

www.manaraa.com

274

main ()
{

union
long long_element;
float float element;
u;

long lng_var;
float fIt var;
lng_var = u.long_element = 10;

Chapter 8

printf("The value of lng_var cast to a float \
is: %f\n", (float) lng_var);

printf("The value of float element after\n\
assignment to long_element is: %f\n\n",

u.float element);

fIt var = u.float element 3.555;

printf("The value of fIt var cast to a long \
is: %d\n", (long) flt_var);

printf("The value of long element after an \n\
assignment to float_element is: %d\n",

u.long_element);

The results are

The value of lng_var cast to a float is: 10.000000
The value of float element after
assignment to long_element is: 0.000000

The value of flt_var cast to a long is 3
The value of long_element after an
assignment to float_element is: 1074557091

In a cast, the compiler makes every attempt to preserve the true value. So when
casting a long to a float, the compiler simply adds a fractional part equal to zero.
And when casting a float to a long, the compiler truncates the fractional part. In
a union, on the other hand, the compiler ignores the true value - it is interested
only in the bit sequence. The values we receive from the program are machine
dependent since they depend on the way our system stores longs and floats.
Both casts and unions are powerful tools, but it is important not to confuse the
two.

www.manaraa.com

Structures and Unions 275

Box 8-4: ANSI Feature -Initializing Unions

The K&R tandard tate that variable of union type may not be initial
ized. However, the ANSI Standard allow unions to be initialized by
a igning the initialization value to the first union component:

union init example

int i ;
float f ;

) ;

1* Assig ns 1 to test . i *1
union init_example test = {l} ;

If the fir t component of a union j a structure, the entire tructure may be
initialized a in

union u

struct { int i ; float f ; } S ;
cha r ch(6) ;

} ;

1* Assigns 1 to test . 2 . S . i and 1 . 0 to
* test2 . S . f
*1

union u test2 { 1 , 1.0 } ;

8.3.2 Variant Records

The other application of unions is in creating a single structure that can hold
different types of values. For example, suppose you want to add three additional
pieces of information to the vitals tat structure:

• Are you a U.S. citizen?

• If not a U.S. citizen, what is your nationality?

• If you are a U.S. citizen, in what city were you born?

www.manaraa.com

276 Chapter 8

One way to add this infonnation is to declare three new fields:

struct vitalstat

} ;

struct vitalstat *next;
char name[19], ssnum[ll];
unsigned int vs_day: 5,

vs_month : 4,
vs year : 11;

unsigned UScitizen : 1; /* Bit field for U.S.
citizenship */

char nationality[20];
char city_of_birth[20];

Note, however, that one of these new members will always be empty. If the
UScitizen bit is set, nationality will be empty; if UScitizen is zero, city_oLbirth
will be empty. Since these two fields are mutually exclusive, you can have them
overlap in memory by declaring a union:

struct vitalstat

} ;

struct vitalstat *next;
char name[19], ssnum[ll];
unsigned int vs_day: 5,

vs_month : 4,
vs_year : 11;

unsigned UScitizen : 1; /* Bit field for U.S.
citizenship */

union {
char nationality[20];
char city of_birth[20];
location;

This saves us 20 bytes of memory for each structure. For a large array of
structures, this can result in significant savings. The following functions show
how you would use the UScitizen member to decide which union member to
access. The key function is get_city _info(); the other two functions
double_check() and isyes()-are general-purpose functions for processing user
input. These functions make use of the runtime function fgetc(), which reads a
string from the specified file or device. For more infonnation aboutfgetc(), you
can read about it in Appendix A.

www.manaraa.com

Structures and Unions 277

#include <stdio.h>
#include "v stat2.h" /* includes location union */
#define TRUE 1
#define FALSE 0

/*

*
Remove trailing newline (if any), and see if
user typed the right entry.

*/

static int double_check (s)
char *s;

int last_char = strlen(s) - 1;

if (s[last_char] == '\n')
s[last_char] = 0;

printf("Is '%s' correct? (Y or N) ", s);
return is_yes();

static int is_yes()

char answer[64];

while (1)
{

fgets(answer, sizeof(answer) , stdin);

switch (answer[O])

case 'y' :
case 'Y' : return TRUE;
case 'n' :
case 'N' : return FALSE;
default : printf("Please answer Y or N\n");

www.manaraa.com

278 Chapter 8

void get city_info (pvs)
VITALSTAT *pvs;

int answered = FALSE;

printf("Are you a U.S. citizen? ");
pvs->UScitizen = is_yes();

while (!answered)
if (!pvs->UScitizen)

printf("What is your nationality?");
fgets(pvs->location.nationality,

sizeof(pvs->location.nationality), stdin);
answered = double_check(

pvs->location.nationality);

else /* UScitizen */

printf("Enter city of birth: ");
fgets(pvs->location.city_of_birth,

sizeof(pvs->location.city_of_birth), stdin);
answered = double_check(

pvs->location.city_of_birth);

Note that the union member accessed depends on the value of UScitizen. This is
typical of variant records, in which one member serves as a selector of union
members.

www.manaraa.com

Structures and Unions 279

8.4 enum Declarations

Just as it is possible to declare tag names for structures and unions, it is also
possible to declare tag names for enum types. For instance, the declaration

enum types { INT, LONG_INT, FLOAT, DOUBLE, POINTER };

defines the tag name types, which can then be used in future declarations. For
example,

enum types
enum types
enum types
enum types

t1;
*ptypes;
ar_types[5];
f_types () ;

/* pointer to types enum */
/* array of types enums */
/* function returning types

* enum
*/

You can also use a typedef:

typedef enum {
INT, LONG_INT, FLOAT, DOUBLE, POINT-

ER
TYPES;

Now you can make the declarations:

TYPES tl;
TYPES *ptypes; /* pointer to TYPES enum */
TYPES ar_types[5]; /* array of TYPES enums */
TYPES f_types(); /* function returning TYPES

* enum */

As with typedefs of structures and unions, enum typedefs are generally placed in
a header file where they can be accessed by multiple source files.

www.manaraa.com

280 Chapter 8

Exercises

1. In many commercial applications, integers are represented in a form
called BCD (Binary-Coded Decimal). In BCD form, each digit is
represented by 4 bits. An 8-digit integer, for example, would require
32 bits. Write two functions: one that converts integers into BCD
format and another that converts BCD integers into their original form.
Use bit fields to store each BCD digit.

2. Write a function that accepts two pointers, each to a linked list, and
concatenates the two lists, attachi~g the second list to the first.

3. A stack is a special kind of list that has the following two properties:

• You can only add elements at the end of the list. This is calledpushing.

• You can only remove elements from the end of the list. This is called
popping.

Write two functions, push() and pop(), that perform these stack tasks.

4. Stacks are called first in, last out (FILO) queues because the first
element pushed onto the stack is always the last one popped. Using
push(), pop(), and any other functions you need, write a program that
reads a line from the terminal and determines whether or not it is a
palindrome. A palindrome is a string that is the same spelled forward
or backward. For example, "Able was I ere I saw Elba."

5. The ANSI offsetof macro uses an interesting set of C pointer and
casting expressions. The macro typically looks something like

#define offsetof (t, m) (size_t) & ((t*) O->m)

Explain exactly why the code above produces the byte offset of a
structure member. Can you think of a different way to perform offsetof!

www.manaraa.com

Chapter 9

Functions

You are fond of argument, and now you fancy that I am a
bag full of arguments. - Socrates, Theoetus

We have been using functions throughout the previous chapters and have dis
cussed in passing some of their essential features. In this chapter, we take a
more rigorous look at them and introduce some new topics, including pointers to
functions, recursion, and a new ANSI feature called prototyping.

9.1 Passing Arguments
Arguments to a function are a means of passing data to the function. Many
programming languages pass arguments by reference, which means they pass a
pointer to the argument. As a result, the called function can actually change the
value of the argument. In C, arguments are passed by value, which means that a
copy of the argument is passed to the function. The function can change the
value of this copy, but cannot change the value of the argument in the calling
routine. Figure 9-1 shows the difference. Note that the arrows in the call-by-ref
erence picture point in both directions, whereas the call-by-value arrows go in
only one direction. The argument that is passed is often called an actual argu
ment, while the received copy is called aformal argument or formal parameter.

www.manaraa.com

282 Chapter 9

Calling Function Called Function

Pass By Reference

Actual - ., address of L- _I Formal I Argument -- - argument 1-- -I Argument

Pass By Value

Actual .,1 value of 1 ... 1 Formal I Argument - argument 1 -I Argument

Figure 9-1. Pass By Reference vs. Pass By Value. In Pass By
Reference, the actual and formal arguments refer to
the same memory area; in Pass By Value, the formal
argument is a copy of the actual argument.

Because C passes arguments by value, a function can assign values to the formal
arguments without affecting the actual arguments. For example,

#include <stdio.h>

main()
{

extern void f();
int a = 2;

f(a); /* pass a copy of NaN to Nf()N */
printf(N%d\nN, a);
exit(O);

void f(received_arg
int received_arg;
{

received_arg = 3; /* Assign 3 to argument copy */

In the example above, the printf() function prints 2, not 3, because the formal
argument, received _arg infO, is just a copy of the actual argument a. C matches
actual arguments in the call to the corresponding formal arguments in the func
tion definition, regardless of the names used. That is, the first actual argument is

www.manaraa.com

Functions 283

matched to the first formal argument, the second actual argument to the second
formal argument, and so on. For correct results, the types of the corresponding
actual and formal arguments should be the same.

If you do want a function to change the value of an object, you must pass a
pointer to the object and then make an assignment through the dereferenced
pointer. The following, for example, is a function that swaps the values of two
integer variables.

/* Swap the values of two int variables */

void swap(x, y)
int *x, *y;

register int temp;

temp = *x;
*x *y;
*y = temp;

To call this function, you need to pass two addresses:

main()
{

int a = 2, b = 3;

swap (&a, &b);
printf("a = %d\t b

Executing this program yields

a = 3 b = 2

%d\n", a, b);

The pass-by-value method explains the purpose of the address of operator in
scanf() calls. When you write

scanf ("%d", &num);

the two arguments tell the function what type of data to read (%d indicates an
integer) and where to store it (at the address of num). If you passed the variables
themselves, there would be no way for scanf() to make assignments to them. By
passing the addresses, you give scanf() access to the variables so it can assign
them values.

www.manaraa.com

284 Chapter 9

9.2 Declarations and Calls
Functions can appear in a program in three forms:

Definition

Function Allusion

Function Call

A declaration that actually defines what the
function does, as well as the number and type
of arguments.

Declares a function that is defined elsewhere.
A function allusion specifies what kind of val
ue the function returns. (With the new
prototyping feature, discussed in Box 9-1, it is
also possible to specify the number and types
of arguments in a function allusion.)

Invokes a function, causing program execu
tion to jump to the invoked function. When the
called function returns, execution resumes at
the point just after the call.

9.2.1 Function Definition Syntax

Figure 9-2 shows the formal syntax of a function definition. You can specify any
number of arguments, including zero. The return type defaults to iot if you leave
it blank. However, even if the return type is iot, you should specify it explicitly
to avoid confusion.

If the function does not return an iot, you must specify the true return type. If
the function does not return any value, you should specify a return type of void.
Before void became a common feature of C compilers, it was a convention to
leave off the return type when there was no return value. The return type would
default to iot, but the context in which the function was used would usually
make it clear that no meaningful value was returned. With modem C compilers,
however, there is no excuse for omitting the return type. If your compiler does
not support void, you should circumvent the deficiency by defining a preproces
sor macro that changes void to iot:

#define void int

Not only does this make it possible to declare functions returning void, thus
aiding readability, but it also opens an avenue of upward mobility. If at a later
date you use a compiler that supports void, all you need to do is remove the
preprocessor definition. No other change to the source code is required.

www.manaraa.com

Functions

return
type

function
body

function
name

argument
declaration

Figure 9-2. Syntax of a Function Definition.

9.2.2 Argument Declarations

285

Argument declarations obey the same rules as other variable declarations, with
the following exceptions:

• The only legal storage class is register.

• chars and shorts are converted to ints; floats are converted to doubles.
(With the new ANSI prototyping feature , you can disable these auto
matic conversions.)

• A formal argument declared as an array is converted to a pointer to an
object of the array type.

www.manaraa.com

286 Chapter 9

• A fonnal argument declared as a function is converted to a pointer to a
function.

• You may not include an initializer in an argument declaration.

It is legal to omit an argument declaration, in which case the argument type
defaults to int. This is considered very poor style, however.

There is a new syntax invented by ANSI that allows you to declare the type of
arguments when you list the parameters. For example, instead of writing

int f(a, b, c)
int a;
char *b;
float c;

you could writp

int f(int a, char *b, float c)

This is consistent with the new prototyping syntax described in Box 9-1. How
ever, since it is a new feature, you should make sure your compiler supports it
before using it.

9.2.2.1 The Function Body
The body of a function is delimited by a set of right and left braces. The only
type of statement allowed outside a function body is a declaration.

The body of a function can be empty, which can be useful in the design stages of
a software product. One of the first tasks in designing a large program is to
define a set of high-level operations that correspond to functions. During this
stage, it can be useful to have a function that does nothing but return, in order to
serve as a placeholder for future functionality. These are called stubs. The
following, for instance, is a legal C function that does nothing but return when
called.

void operationl() {}

Later, you can fill in the function with some meaningful code.

9.2.2.2 Return Values
Functions can return only a single value directly via the return statement. The
return value can be any type except an array or function. This means that it is

www.manaraa.com

Functions 287

possible to indirectly return more than a single value by passing a pointer to an
aggregate type. It is also possible to return a structure or union directly, though
this is not generally recommended because it is inefficient.

The syntax for a return statement is shown in Figure 9-3.

GV"--""L-:, :e-x-p-:'r-e-s--s-i-o-n:-~--r---·

Figure 9-3. Syntax of a return Statement.

Many C programmers enclose the return expression in parentheses. The paren
theses, however, are optional, and we find that they enhance readability only
when the return value is a complicated expression.

A function may contain any number of return statements. The first one encoun
tered in the normal flow of control is executed and causes program control to be
returned to the calling routine. If there is no return statement, program control
returns to the calling routine when the right brace of the function is reached. In
this case, the value returned is undefined.

The return value must be assignment-compatible with the type of the function.
This means that the compiler uses the same rules for allowable types on either
side of an assignment operator to determine allowable return types. For exam
ple, if f() is declared as a function returning an int, it is legal to return any
arithmetic type, since they can all be converted to an int. It would be illegal,
however, to return an aggregate type or a pointer since these are incompatible
types. The following example shows a function that returns a float, and some
legal return values.

float f ()
{

float f2;
int a;
char c;

f2 = a;
return a;
f2 = c;
return c;

/* OK, quietly
/* OK, quietly
/* OK, quietly
/* OK, quietly

converts a to float */
converts a to float */
converts c to float */
converts c to float */

www.manaraa.com

288 Chapter 9

The C language is more picky about matching pointers. In the following exam
ple, f() is declared as a function returning a pointer to a char. Some legal and
illegal return statements are shown below:

char *f ()
{

char **cpp, *cpl, *cp2, carlO];
int *ipl, *ip2;

cpl = cp2; /* OK, types match
return cp2; /* OK, types match
cpl = *cpp; /* OK, types match
return *cpp; /* OK, types match

*/
*/
*/
*/

/* An array name without a subscript gets converted
* to a pointer to the first element.
*/
cpl ca; /* OK, types match */
return ca; /* OK, types match */

cpl = *cp2; /* Error, mismatched types
/* (pointer to char vs. char

return *cp2;/* Error, mismatched types
/* (pointer to char vs. char

cpl = ipl; /* Error, mismatched pointer
return ipl; /* Error, mismatched pointer

*/
*/
*/
*/

types
types

return; /* Produces undefined behavior
/* should return (char *)

*/
*/
*/
*/

Note in the last statement that the behavior is undefined if you return nothing.
The only time you can safely use return without an expression is when the
function type is void.

9.2.3 Function Allusions
A function allusion is a declaration of a function that is defined elsewhere,
usually in a different source file. The main purpose of the function allusion is to
tell the compiler what type of value the function returns. With the new ANSI
prototyping feature, it is also possible to declare the number and types of argu
ments that the function takes. This feature is discussed in Box 9-1. The
remainder of this section describes the old function allusion format. Note that
this older syntax will still work with ANSI-conforming compilers.

By default, all functions are assumed to return an int. You are only strictly
required, therefore, to include function allusions for functions that do not return

www.manaraa.com

Functions 289

an into However, it is good style to include function allusions for all functions
that you call. It makes it possible for a reader to determine what functions are
called merely by looking at the declaration section, rather than having to wade
through the entire routine. By the same token, you should not include function
allusions to functions that are not called since this can be misleading. (Some
times this is unavoidable, particularly when you include a header file that
contains allusions to many functions, only a few of which you actually use.)

The syntax for a function allusion is shown in Figure 9-4. If you omit the
storage class, it defaults to extern, signifying that the function definition may
appear in the same source file or in another source module. The only other legal
storage class is static, which indicates that the function is defined in the same
source file. The data type in the function allusion should agree with the return
type specified in the definition. If you omit the type, it defaults to int. Note that
if you omit both the storage class and the data type, the expression is a function
call if it appears within a block; if it appears outside a block, it is an allusion.

fl(); /* Function allusion -- default type is int
*/

main ()
{

f2(); /* Function call */

storage
class

data
type

function
name

Figure 9-4. Syntax of a Function Allusion.

Typically, a function allusion appears at the head of a block with other declara
tions. You can mix function allusions with declarations of other variables. For
example, the following statement declares a pointer to a float, an array of floats,
and a function returning a float.

extern float *pflt, arr_flt[lO] , func_flt();

www.manaraa.com

290 Chapter 9

Though the previous declarations are legal, it is better from a stylistic viewpoint
to keep function declarations separate from declarations of variables:

extern float func_flt();
extern float *pflt, arr_flt[10];

The scope of a function allusion follows the same· rules as other variables.
Functions alluded to within a block have block scope; functions alluded to
outside a block have file scope.

Note, however, that the default storage class rules are different for functions than
for other variables. For example, in the following declaration, the storage class
of pf/t and arr Jlt[) defaults to auto, whereas the storage class of Junc Jlt()
defaults to extern.

float func_flt();
float *pflt, arr_flt[10];

If this declaration appeared outside a block, pf/t and arr Jlt[) would be global
definitions, whereas Junc Jlt() would still be a function allusion.

9.2.4 Function Calls

AJunction call, also called a/unction invocation, passes program control to the
specified function. The syntax for a function call is shown in Figure 9-5. A
function call is an expression and can appear anywhere an expression can
appear. Unless they are declared as returning void, functions always return a
value that is substituted for the function call. For example, if f() returns 1, the
statement

a = f () /3;

is equivalent to

a = 1/3;

www.manaraa.com

Functions 291

It is also possible to call a function without using the return value. The statement

f();

calls the function f() but does not use the return value. If f() returns 1, the
statement is equivalent to

1;

which is a legal C statement, although it is a no-op (no operation is performed,
assumingf() has no side effects).

Normally, you would ignore the return value only if the function returns void.
However, if you want to ignore a real return value, it is better to cast it to void.
For example,

(void) f () ;

is functionally equivalent to

f();

but it makes it clear to you and others that you are deliberately ignoring the
return value. Of course, we frequently break this rule when we call printf() and
scanf(), which both return values. The return value of scanf() can, in fact, be
very useful since it returns the number of objects that are actually assigned
values. Stylistically, we should probably cast these functions to void when we
ignore the return value. In some cases, however, it is better to follow familiar
conventions, even if they are not stylistically perfect.

Figure 9-5. Syntax of a Function Call.

www.manaraa.com

292 Chapter 9

9.2.4.1 Automatic Argument Conversions

In the absence of prototyping, all scalar arguments smaller than an iot are
converted to iot, and all float arguments are converted to double. If the formal
argument is declared as a char or short, the receiving function assumes that it is
getting an iot, so the receiving side converts the iot to the smaller type. If the
formal argument is declared as a float, the receiving function assumes that it is
getting a double, so it converts the received argument to float. This means that
every time a char, short, or float is passed, at least one conversion takes place
on the sending side where the argument is converted to iot or double. In
addition, the argument may also be converted again on the receiving side if the
formal argument is declared as a char, short, or float.

Consider the following:

char a;
short b;
float c;

foo(a, b, c); /* a and b are promoted to ints,
* and c is promoted to double.
*/

foo (x, y, Z)

char X; /* Received arg is converted from int
to char. */

short y; /* Received arg is converted from int
to short. */

float Z; /* Received arg is converted from
double to float */

Note that these conversions are invisible. So long as the types of the actual
arguments match the types of the formal arguments, the arguments will be
passed correctly. However, as discussed in Box 9-1, these conversions can affect
the efficiency of your program. Prototyping enables you to tum off automatic
argument conversions.

www.manaraa.com

Functions

Box 9-1: ANSI Feature - Function Prototypes

Function prototyping is a feature introduced to the C language by Bjarne
Strou trup of AT&T and adopted by the ANSI committee. (The prototyp
ing feature i part of the C++ language, documented in The C++
Programming Language.) Function prototype enable function allusion
to include data type information about argument. This ha two main
benefit:

• The compiler check that the type of the actual argument in the
function call are compatible with the types of the formal arguments
specified in the function allusion.

• Automatic argument conver ions are no longer required. Floating
types need not be converted to double and small integers need not be
widened to into This can significantly speed up algorithms that make
inten ive use of small integer or floating-point data.

The format for declaring function prototype i the ame as the old func
tion allu ion yntax except that you can enter type for each argument.
For example, the function allu ion

extern void func{ int, float , char *);

declares a function that accept three argument -an int, a float, and a
pointer to a char. The argument types may optionally include argument
names. For example, the previou declaration could also be written

extern void func(int a , float b, char *pc) ;

The argument names have no meaning other than to make the type decla
ration ea ier to read and write. 0 torage i allocated for them, and the
names do not conflict with real variables with the same name.

If you attempt to call thi function with

func (j , x) ;

the compiler should report an error since the call contains only two argu
ments whereas the prototype specifie three arguments. Also, if the
argument types cannot be converted to the types specified in the proto
type, a compilation error occurs. The rules for converting arguments are
the same as for assignments (ee Chapter 3). The following, for example,
hould produce an error because the compiler cannot automatically con

vert a pointer to a float.

(continues)

293

www.manaraa.com

294 Chapter 9

Box 9-1 (continued):

extern void f (int *)i
float X i

f (x); /* ILLEGAL -- cannot convert a f loat

* to a pointer
*/

If the compiler can quietly convert an argument to the type of it proto
type, it doe o. In the following example, for instance,} i converted to a
float and x i converted to a short before they are passed.

e x tern void f (float , short)i
double X i

long j i

f (j , X)i 1* OK -- long is converted to
* float , and double is converted

to short .
*1

Without prototyping, thi example would produce erroneou results be
cau e f() would treat} as a float and x as a hort. Prototyping ensures
that the right number of argument are pa ed, and it prohibit you from
pa sing arguments that cannot be quietly converted to the correct type.
On th other hand, it doe quietly convert arguments when it can. Thi
could re ult in unexpected conver ion that lead to erroneous re ull . Of
cour e, thi error i ju t a likely to occur without prototypes. Prototype
give you type checking for certain type of data, particularly pointers. but
not for integer and floating-point type .

To declare a function that takes no arguments, u e the void type pecifier:

extern int f (void) 1 * This function takes no

* arguments .

(continues)

www.manaraa.com

Functions 295

Box 9-1 (continued):

Future Feature: Nonoverlapping Arrays
A problem with pointer and the C language is that fast computers em
ploying multiple proce or or vector unit to speed up processing cannot
ea ily u e array argument in the C language. This is because argument
declared a array are converted to pointer types and few restriction are
placed on what data item the pointer may point to. The ANSI tandard
warn that future version of C may distinguish between argument de
clared a "pointer to" and argument declared as "array of." In particular,
each parameter declared a an array will be constrained to reference only
a ingle array, and no other array parameter may overlap it. Thi will al
low a compiler to generate optimized code for processing array .
Can ider the following example:

/* may ff vectorize ff unde r future versions of C */
vadd (float vecl[] , float vec2[] , float vec3[))
{

int a ;
for (a = 0 ; a < 32 ; a++)

vecl[a) = vec2[a] + vec3[a) ;

Under existing rules, the compiler must a ume the war t, that vecJ over
laps with vec2 or ved such that early a ignment to vecJ affect later
references to vec2 or lIed. This forces the compiler to generate conven
tional sequential code for vadd. In the future, a compiler will be able to
generate a single vector add instruction to imultaneou Iy add all of vec2
and ved followed by a single vector tore to "eel, or a ign a different
proce sor to each loop of the for statement.

If you write code with array references that overlap and you want [0 be
ure that it i executed sequentially on parallel or vector machine, you
hould u e pointer notation in your declaration .

Prototyping a Variable Number of Arguments
If a function accept a variable number of argument (printf() . for exam
ple), you can u e the ellipsis token H • •• " . The prototype for printf() i

int printf(const char *format , ...);

Thi indicate that the fir t argument is a character string and that there i
an unspecified number of additional arguments. See Section A.12 for
more information about referencing arguments to functions that take a
variable number of arguments.

www.manaraa.com

296 Chapter 9

9.3 Pointers to Functions
Pointers to functions are a powerful tool because they provide an elegant way to
call different functions based on the input data. Before discussing pointers to
functions, however, we need to describe more explicitly how the compiler inter
prets function declarations and invocations.

The syntax for declaring and invoking functions is very similar to the syntax for
declaring and referencing arrays. In the declaration

int ar[5];

the symbol ar is a pointer to the initial element of the array. When the symbol is
followed by a subscript enclosed in brackets, the pointer is indexed and then
dereferenced. An analogous process occurs with functions. In the declaration

extern int f();

the symbol I by itself is a pointer to a function. When a function is followed by
a list of arguments enclosed in parentheses, the pointer is dereferenced (which is
another way of saying the function is called). Note, however, that just as ar in

int ar [5] ;

is a constant pointer, so, too, I in

extern int f();

is a constant pointer. Hence, it is illegal to assign a value to f. To declare a
variable pointer to a function, you must precede the pointer name with an
asterisk. For example,

int (*pf) () ; /* pf is a pointer to a function
* returning an into
*/

declares a pointer variable that is capable of holding a pointer to a function that
returns an int. The parentheses around *pI are necessary for correct grouping.
Without them, the declaration

int *pf ()

would make pi a function returning a pointer to an int.

www.manaraa.com

Functions 297

9.3.1 Assigning a Value to a Function Pointer

To obtain the address of a function, you merely enter a function name without
the argument list enclosed in parentheses. For example,

extern int f1 () ;
int (*pf) (); /* Declare pf as "pointer to

* function returning int" */

pf fI; /* assign address of fl to pf */

If you include the parentheses, then it is a function call. For example, if you
write

pf fI(); /* ILLEGAL -- fl returns an int,
* but pf is a pointer */

you should get a compiler error because you are attempting to assign the returned
value of [I () (an int) to a pointer variable, which is illegal. If you write

pf = &fI(); /* ILLEGAL -- cannot take the address
* of a function result. */

the compiler will attempt to assign the address of the returned value. This too is
illegal. Lastly, you could write

pf = &fI; /* ILLEGAL &fI is a pointer to
* a pointer, but pf is a pointer to
* an into
*/

On older C compilers, this would also cause a compile error (or warning) be
cause the compiler would interpret [I as an address of a function, and the
address of (&) operator attempts to take the address of an address. C does not
permit this. Even if it did, the result would be a pointer to a pointer to a function
which is incompatible with a simple pointer to a function. (The ANSI Standard
allows this syntax by ignoring the & operator.)

We point out all of these wrong ways of assigning a pointer to a function because
nearly everyone, in their initial stages of learning C, tries one or more of these
possibilities.

www.manaraa.com

298 Chapter 9

9.3.2 Return Type Agreement

The other important point to remember about assigning values to function point
ers is that the return types must agree. If you declare a pointer to a function that
returns an int, you must assign the address of a function that returns an int, not
the address of a function that returns a char, a float, or some other type. If the
types don't agree, you should receive a compile-time error. The following
example shows some legal and illegal function pointer assignments.

extern int ifl (), if2 (), (*pif) () ;
extern float ffl (), (*pff) () ;
extern char cfl (), (*pcf) () ;

main ()
{

pif ifl; /* Legal -- types match */
pif cfl; /* ILLEGAL -- type mismatch
pff if2; /* ILLEGAL -- type mismatch
pcf cfl; /* Legal -- types match */

*/
*/

ifl if2; /* ILLEGAL -- Assign to a constant

9.3.3 Calling a Function Using Pointers

*/

To dereference a function pointer, thereby calling a function, you use the same
syntax you use to declare the function pointer, except this time you include
parentheses and possibly arguments. For example,

extern int fl();
int (*pf) ();
int answer;

pf = fl;
answer = (*pf) (a); /* Calls function fl () with

* argument a
*/

www.manaraa.com

Functions 299

As with the declaration, the parentheses around *pf in the function call are
essential to override default precedence rules. Without them, pi would be a
function returning a pointer to an int, rather than a pointer to a function. Note
that the value of a dereferenced function pointer is whatever it was declared to
be. In our case, we declared pi with the statement

int (*pf) ();

signifying that when it is dereferenced, it will evaluate to an int.

One peculiarity about dereferencing pointers to functions is that it does not
matter how many asterisks you include. For example,

(*pf) (a)

is the same as

(****pf) (a)

This odd behavior stems from two rules: first, that a function name by itself is
converted to a pointer to the function; and second, that parentheses change the
order of evaluation. The parentheses cause the expression

****pf

to be evaluated before the argument list. Each time pi is dereferenced, it is
converted back to a pointer because the argument list is still not present. Only
after the compiler has exhausted all of the indirection operators does it move on
to the argument list. The presence of the argument list makes the expression a
function call.

It follows from this logic that you can dereference a pointer to a function without
the indirection operator. That is,

pf(a)

should be the same as

(*pf) (a)

This is, in fact, the case according to the ANSI Standard. Older compilers,
however, may not support this syntax. We recommend the second version
because it is more portable and reminds us that pi is a pointer variable.

www.manaraa.com

300 Chapter 9

9.3.4 A Generalized Sort Routine

A common use of pointers to functions is to provide a mechanism for performing
a number of similar operations without needlessly duplicating code. Suppose,
for example, that you want to sort an array of ints in both ascending and
descending order. One possibility is to write one function to do the sort in
ascending order and another to do it in descending order. However, these two
functions would be almost identical. It would be more efficient to change only
what needs to be changed without duplicating everything else.

#define FALSE 0
#define TRUE 1

void bubble_sort (list, list_size
int list[], list_size;

int j, k, temp, sorted FALSE;

while (! sorted)
{

sorted = TRUE;
for (j = 0; j <

if (list[j] >
{

/* assume list is sorted */
list size - 1; j++)
list[j+1])

temp = list[j]:
list[j] = list[j+1];
list[j+1] = temp:
sorted = FALSE:

/* end of while loop */

Our bubble _sort() program from Chapter 5 is shown above. It is clear that the
statement that we need to change to make it a descending sort is the expression

list[j] > list[j+1]

If we change the "greater than" operator to "less than"

list[j] < list[j+1]

the function will sort in descending order.

www.manaraa.com

Functions 301

Rather than rewriting the entire program to make this one change, we can simply
remove this expression and make it into a function called compare(). Then we
change the statement in bubble _sort() to

if (compare(list[j], list[j+l]

If the sort is in ascending order, compare() should return 1 when list[j] is greater
than list[j+l]; otherwise it should return O. For descending sorts, the return
value should be reversed. So we need two compare functions:

/* Compare two integers and return 1 if a is
* greater than b -- use for ascending sorts.
*/

int compare_ascend (a, b)
int a,b;

return a > b;

/* Compare two integers and return 1 if a is less
* than b -- use for descending sorts.
*/

int compare_descend (a, b)
int a,b;

return a < b;

This doesn't completely solve the problem, however. We have abstracted the
differences between an ascending and descending sort into two small functions,
but we haven't created a mechanism to select one of these functions dynamically.
We could change the compare() call in the bubble _sort() function to either
compare _ ascend() or compare _ descend(), but how can we make it choose one or
the other depending on which sort we desire?

The solution lies in pointers to functions. Specifically, we need to make com
pare a pointer to a function capable of pointing to either compare _ ascend() or
compare _ descend(). Then we can add another argument to bubble _sort() indi
cating whether the sort is to be in ascending or descending order. To declare
compare as a pointer to a function that returns an int, you would write

int (*compare) ();

www.manaraa.com

302 Chapter 9

Using compare as a pointer to a function, we can rewrite bubble _sortO as
follows:

#define FALSE 0
#define TRUE 1

void bubble_sort (list, list_size, compare)
int list[], list_size;
int (*compare) () ;

int j, k, temp, sorted FALSE;

while (! sorted)
{

sorted = TRUE; /* assume list is sorted */
for (j = 0; j < list_size-1; j++)
if ((*compare) (list[j], list[j+1]))
{

temp = list [j] ;
list[j] = list[j+1];
list[j+1] = temp;
unsorted = 1;

/* end of while loop */

This makes the program smaller and more straightforward. Note that we do not
need to declare compare _ ascend() and compare _ descend() because the address
of one or the other is being passed directly to bubble _sortO. However, this puts
a burden on the calling function since it must know the addresses of these two
functions. For example, you might call bubble _sort() as follows to sort an array
in descending order:

main ()
{

extern void bubble_sort();
extern int compare ascend(), compare_descend();
static int list[] = {1, 0, 5, 444, -332, 76 };

#define LIST_SIZE (sizeof(list)/sizeof(list[O]))

bubble_sort (list, LIST_SIZE, compare_descend);
exit (0);

To pass a pointer to compare _ descendO, we just enter the function name without
the parentheses.

www.manaraa.com

Functions 303

Since sorting is such a common task, it probably makes sense to put all the
declarations for the sort function into a header file. For example, we could
create a file called sort.h that contains the following:

#define ASCEND compare_ascend
#define DESCEND compare_descend

extern void bubble_sort();
extern int compare_ascend(), compare_descend();

Rewriting the maine) function using this header file, we get

#include "sort.h"

main ()
{

static int list[] = {l, 0, 5, 444, -332, 76 };
#define LIST_SIZE (sizeof(list)/sizeof(list[O]))

bubble_sort (list, LIST_SIZE), DESCEND);
exit (0);

This is superior to the previous version for a number of reasons. First, it makes
it easier to call bubble _sortO from other functions since all you need to do is
include the header file. Second, it hides the names and data types of the compar
ison functions. If, for some reason, you want to change the names at a later date,
you need only change the header file to broadcast the change to all source files.
Without the header file, you would need to search through every module to find
all the places where compare _ ascend() and compare _ descend() are declared and
invoked.

It may seem that we have gone to a lot of trouble just to make bubble _sort()
general enough to sort in either ascending or descending order. Wouldn't it have
been easier, after all, to write two separate functions? The answer is probably
yes. In this particular instance, it is questionable whether it is really worth
generalizing bubble _sort(). We did it more to illustrate some important princi
ples and techniques than to improve our code. The runtime library, however,
contains a much more generalized sort function called qsort() which makes more
practical use of pointers to functions. Not only can it sort objects in a user-de
fined order, but it can also sort objects of any data type. See Section A.14.5 for
more about qsort().

www.manaraa.com

304 Chapter 9

9.3.5 Returning Pointers to Functions
A function may return a pointer to a function. However, you must declare the
type of the function properly. For example, the following declares a function
that returns a pointer to a function that returns an into

int (*f (x, y)) () /* f is a function with

float x, y;

* arguments x and y, returning
* a pointer to a function
* returning an into
*/

As an example of when you might use this construct, consider the case where
you need to sort many files of data. We already mentioned that there are several
sorting algorithms, each of which is best with certain types of data. A quicksort,
for example, is very fast with randomly arranged data but is inefficient if the
data is already largely sorted. For data that is already in approximately sorted
order, a merge sort is one of the most efficient algorithms. If the array to be
sorted is very large, on the other hand, a heap sort might be best since it requires
the minimum amount of memory. (See Computing Algorithms by Donald Knuth
for a detailed discussion.)

Suppose, then, that we have three functions--quick _sort(), merge _sort(), and
heap _sort()-and another function, called best _sort(), which is capable of sam
pling an array to determine which sort method is most efficient for a particular
set of data. We can write best _ sort() so that it returns a pointer to one of the
three sort functions:

void (* best_sort(list)) (
float list [1 ;

extern void quick_sort(), merge_sort(),
heap_sort () ;

/* Analyze data */
/* If quick sort is best */

return quick_sort;

/* Else if merge sort is best */
return merge_sort;

/* Else if heap sort is best */
return heap_sort;

www.manaraa.com

Functions 305

To sort an array, you would invoke one of the sort functions as shown below:

void sort_array(list)
float list [] ;
{

extern void (* best_sort ()) () ;

(best_sort (list)) (list);

Note that the argument list appears twice - once for the best _sort() function and
once for the sorting function whose address best _sort() returns.

There are, of course, other ways to perform the same functionality without using
pointers to functions. One advantage of using pointers, however, is that we
remove all decision making from the sort _ array() function. If we want to add
new sorting functions, the only routine we need to change is best _sort().

One thing you must be careful about when using pointers to functions is to make
sure that assignment types agree with declaration types. This can become diffi
cult as declarations become more and more complex. In the following example,
we attempt to return a pointer to a function that returns a pointer to a function
that returns an int, when what is expected is simply a pointer to a function that
returns an into It is worth spending a few moments to make sure that you
understand this example. We discuss complex declarations such as these in more
detail in Section 9.6.

www.manaraa.com

306 Chapter 9

int (*f ()) () /* f is a function that returns
* a pointer to a function that
* returns an into
*/

extern int fl(); /* fl is a function that returns
* an into
*/

extern int (* f2 ()) () ; /*

*
*

f2 is a function that
returns a pointer to a
function that returns

* an into
*/

int (*pf) (); /* pf is a pointer to a function
* that returns an int
*/

pf = fl; /* OK, types match.
return fl; /* OK types match.
pf = f2; /* Error, mismatched pointer
return f2; /* Error, mismatched pointer

9.4 Recursion
A recursive function is one that calls itself. For example,

void recurse ()
{

static count 1;

printf("%d\n", count);
count++;
recurse();

main ()
{

extern void recurse();

recurse();

types.
btypes

*/
*/
*/
*/

What will this program do? First it prints the value of count, which is 1; then it
increments count; then it calls itself. The second time through, count equals 2.
This repeats ad infinitum. The output will be

www.manaraa.com

Functions

1
2
3
4

5

307

At some point, the computer will run out of stack memory, and the program will
abort with a runtime error. This illustrates an important point about recursive
programming: you must include a stop point or the program will run forever (or
until it runs out of memory). For example, we can modify the previous function
so that it calls itself only three times:

void recurse ()
{

static count 1;

if (count > 3)
return;

else

printf("%d\n", count);
count ++;
recurse();

main()
{

extern void recurse();

recurse();

The condition that ends the recursion (count being greater than 3) is called the
base case. Note that the program would not end if count were automatic rather
than fixed because it would dynamically create a new variable called count and
reinitialize it to 1 with each call. This is an important aspect of recursion: for
each new call, the compiler creates a whole new set of automatic variables.
Even though they have the same name, they refer to different memory areas.

www.manaraa.com

308 Chapter 9

9.4.1 The Return Value in Recursive Calls
Using fixed variables is one way to control recursion. Another method is to use
the input value. The program below, for example, uses recursion to compute the
sum of integers from I to n.

int sum(n)
int n;

if (n <= 1)

return n;
else

return (n + sum(n-l));

It is useful to step through the function, observing what value gets returned with
each call. If we pass the function the value 5, the call trace shown in Figure 9-6
occurs.

sum(5)

+
15 ,

5 + sum(4)

+
4 + sum(3)

+

10 ,
6 ,

3 + sum(2) 3
+ ,
2 + sum(1) ~1

Figure 9-6. Recursion. Call trace of sumO function when argument
is 5.

Note that no call returns until all of its subcalls have returned. In our example,
this doesn't occur until n is less than or equal to 1, at which time the function
unwinds itself. First it returns 1, which is added to 2, returning the value 3,
which is added to 3 to return 6, which is added to 4 to return 10, which is added
to 5 to return 15.

Recursive programs are difficult to conceptualize at first, but they are very
powerful. They form the basis of artificial intelligence languages such as LISP
and Prolog.

You can always use looping constructs to get the same effect as recursion, but the
program is often much simpler and easier to read when implemented recursively.
Recursion, however, is not necessarily more efficient since the computer

www.manaraa.com

Functions 309

must allocate additional stack space for each call. If the recursion is deep
enough, the program will run out of stack memory and abort.

9.5 The mainO Function

All C programs must contain a function called main(), which is always the first
function executed in a C program. When main() returns, the program is done.
The compiler treats the main() function like any other function, except that at
runtime the host environment is responsible for providing two arguments. The
first, usually called argc by convention, is an int that represents the number of
arguments that are present on the command line when the program is invoked;
the second, called argv by convention, is an array of pointers to the command
line arguments.

The following program uses argc and argv[] to print out the list of arguments
supplied to it when it is invoked:

/* echo command line arguments */
main(argc, argv
int argc;
char *argv[];
{

while (--argc > 0)
printf("%s ", *++argv);

printf ("\n");
exit(0);

In UNIX systems, there is a program like this called echo. So, if you write at the
command line

echo Alan Turing was a father of computing.

the system prints

Alan Turing was a father of computing.

Note that a pointer to the command itself is stored in argv[Oj. This is why we
use the prefix increment operator rather than the postfix operator to increment
argv. Otherwise, the name ofthe command, echo, would be printed first.

www.manaraa.com

310 Chapter 9

When you invoke a program, each command line argument must be separated by
one or more spaces. Note that the command line arguments are always passed to
main() as character strings. If the arguments are intended to represent numeric
data, you must explicitly convert them. Fortunately, there are several functions
in the runtime library that convert a string into its numeric value. The function
atoi(), for example, converts a string into an int, and atof() converts a string into
a float. The following program takes two arguments and returns the first to the
power of the second:

#include <math.h>

main(argc, argv
int argc;
char *argv[];
{

float x, y;

if (argc < 3)
{

printf("Usage: power <number>\n");
printf("Yields argl to arg2 power\n");
return;

x = atof(*++argv);
y = atof(*++argv);
printf("%f\n", pow(x, y));

The pow() function is part of the runtime library. We show more examples of
using the command line arguments when we discuss file I/O in Chapter 11.

9.6 Complex Declarations
Declarations in C have a tendency to become complex, making it difficult to
determine exactly what is being declared. The following declaration, for in
stance, declares x to be a pointer to a function returning a pointer to a 5-element
array of pointers to ints:

int *(*(*x) ()) [5];

One way to avoid complex declarations such as this one is to create intermediate
typedefs, as shown on the following page.

www.manaraa.com

Functions 311

typedef int *AP[5];/* 5-element array of pointers
* to ints.
*/

typedef AP *FP(); /* Function returning pointer to
* 5-element array of pointers

FP *x

* to ints.
*/

/* Pointer to function returning
* pointer to 5-element array of
* pointers to ints.
*/

The main reason that complex declarations look so forbidding in C is that the
pointer operator is a prefix operator, whereas the array and function operators are
postfix operators. As a result, the variable becomes sandwiched between opera
tors. To compose and decipher complex declarations, you must proceed
inside-out, adding asterisks to the left of the variable name and parentheses and
brackets to the right of the variable name. It is also important to remember the
following two binding and precedence rules:

1. The array operator [] and function operator () have a higher precedence
than the pointer operator (*).

2. The array and function operators group from left to right, whereas the
pointer operator groups from right to left.

9.6.1 Deciphering Complex Declarations
The best strategy for deciphering a declaration is to start with the variable name
by itself and then add each part of the declaration, starting with the operators that
are closest to the variable name. In the absence of parentheses to affect binding,
you would add all of the function and array operators on the right side of the
variable name first (since they have higher precedence) and then add the pointer
operators on the left side. The declaration

char *x[];

would be deciphered through the following steps:

1. x[] is an array.

2. *x[] is an array of pointers.

3. char *x[] is an array of pointers to chars.

www.manaraa.com

312 Chapter 9

Parentheses can be used to change the precedence order. For example,

int (*x [1) () ;

would be decomposed as follows:

1. x[] is an array.

2. (*x[D is an array of pointers.

3. (*x[DO is an array of pointers to functions.

4. int (*x[DO is an array of pointers to functions returning ints.

If this declaration had been written without the parentheses as

int *x [1 () ;

it would have been translated as

an array of functions returning pointers to ints

which is an illegal declaration since arrays of functions are invalid.

9.6.2 Composing Complex Declarations
To compose a declaration, you perform the same process. For example, to
declare a pointer to an array of pointers to functions that return pointers to
arrays of structures with tag name S, you could use the following steps:

1. (*x) is a pointer.

2. (*x)[] is a pointer to an array.

3. (*(*x)[]) is a pointer to an array of pointers.

4. (*(*x)[])O is a pointer to an array of pointers to functions.

5. (*(*(*x)[])()) is a pointer to an array of pointers to functions return
ing pointers.

6. (*(*(*x)[])())[] is a pointer to an array of pointers to functions
returning pointers to arrays.

7. struct S (*(*(*x)[])())[] is a pointer to an array of pointers to func
tions returning pointers to arrays of structures with tag name S.

Note that we add parentheses for binding each time we add a new pointer
operator.

www.manaraa.com

Functions 313

int i; Aniot
int *p; A pointer to an int
int all ; An array ofints
int f(); A function returning an int
int **pp; A pointer to a pointer to an int
int (*pa) []; A pointer to an array of ints
int (*pf) () ; A pointer to a function returning an int
int *ap []; An array of pointers to iots
int aa [] []; An array of arrays of ints
int af [] () ; An array of functions returning iots (ILLEGAL)
int *fp () ; A function returning a pointer to an iot
int fa () [] ; A function returning an array of iots (ILLEGAL)
int ff () () ; A function returning a function returning an int

(ILLEGAL)
int ***ppp; A pointer to a pointer to a pointer to an int
int (**ppa) []; A pointer to a pointer to an array of ints
int (**ppf) () ; A pointer to a pointer to a function returning an int
int * (*pap) []; A pointer to an array of pointers to ints
int (*paa) [] []; A pointer to an array of arrays of iots
int (*paf) [] (); A pointer to an array of functions returning iots

(ILLEGAL)
int * (*pfp) () ; A pointer to a function returning a pointer to an iot
int (*pfa) () []; A pointer to a function returning an array of iots

(ILLEGAL)
int (*pff) () () ; A pointer to a function returning a function

returning an iot (ILLEGAL)
int **app[]; An array of pointers to pointers to iots
int (* apa []) [] ; An array of pointers to arrays of ints
int (*apf[]) (); An array of pointers to functions returning iots
int *aap[] []; An array of arrays of pointers to iots
int aaa[] [] []; An array of arrays of arrays of ints
int aaf [] [] () ; An array of arrays of functions returning ints

(ILLEGAL)
int *afp [] () ; An array of functions returning pointers to ints
int afa[]()[]; An array of functions returning arrays of ints

(ILLEGAL)
int aff[] () (); An array of functions returning functions returning

ints (ILLEGAL)
int **fpp () ; A function returning a pointer to a pointer to an iot
int (* fpa ()) [] ; A function returning a pointer to an array of ints
int (*fpf ()) () ; A function returning a pointer to a function

returning an int
int *fap () [] ; A function returning an array of pointers to ints

(ILLEGAL)
int faa () [] [] ; A function returning an array of arrays of iots

(ILLEGAL)
int faf()[](); A function returning an array of functions

returning iots (ILLEGAL)
int *ffp () () ; A function returning a function returning a pointer

to an iot (ILLEGAL)

Table 9-1. Legal and Illegal Declarations in C.

www.manaraa.com

314 Chapter 9

Exercises
1. Modify the echo program so that it prints out the arguments in capital

letters if the -c or -C switch is present when the program is executed.
(Note that the switch should be the first argument and should not be
echoed.)

2. Enhance the program obtained from Exercise 1 so that it will work even
if the switch is not the first argument.

3. Write a recursive version of strlen(). Is the recursive version better or
worse than the iterative version in Chapter 5? Explain your answer.

4. Write a recursive version of strcpy(). Is the recursive version better or
worse than the iterative version in Chapter 5? Explain your answer.

5. Write a recursive function that computes the greatest common divisor
of two positive integers.

6. Write an iterative version of Exercise 5.

7. Write a recursive function that accepts a pointer to a string as its argu
ment, turns the string into a linked list of characters, and returns a
pointer to the first character in the list.

8. Write a recursive function that counts the number of elements in a
linked list. The argument should be a pointer to the first element of the
list, and the return value should be an int.

9. Write a recursive function that prints the data value of each element in a
linked list.

10. Write a recursive function that accepts two pointers, each to a linked
list, and concatenates the two lists, attaching the second list to the first.

11. Using pointers to functions, write a general findO function for linked
lists. (See Chapter 9 for an example of a specializedfind() function.)

www.manaraa.com

Functions 315

12. Decipher the following declarations. Which are legal and which are
illegal? Why?

a) *(*x())[]
b) *(**x)[]
c) (*(*(*x())[])())
d) **x[]O
e) *(x[])[]
f) *(*(x())())

13. Write prototypes for functions that take the following arguments:

a) Two arguments: a float and a pointer to a char.
b) Two arguments: a pointer to an array of ints and a pointer

to a function returning an unsigned long.
c) One argument: a pointer to a function returning a pointer to

a char.
d) Three Arguments: a pointer to struct of type S, a pointer to

an array of chars, and a pointer to an array of functions
returning pointers to functions returning ints.

e) Two arguments: a char and an enum declared as

enurn boolean { FALSE, TRUE};

14. Write a function to multiply two arrays and store the result into a third
array so that it might vectorize on a future ANSI compiler.

www.manaraa.com

Chapter 10

The C Preprocessor

[/language be not in accordance with the truth o/things,
affairs cannot be carried on to success. - Confucious,
Analects

You can think of the C preprocessor as a separate program that runs before the
compiler, with its own simple, line-oriented grammar and syntax. In previous
chapters, we introduced two preprocessor directives-the #define command for
naming a constant and the #include command for including additional source
files. This chapter discusses both of these directives in greater detail and also
describes other preprocessor directives that have not been mentioned yet.
Briefly, the preprocessor gives you the following capabilities:

• Macro processing.

• Inclusion of additional C source files.

• "Conditional compilation," which enables you to conditionally compile
sections of C source contingent on the value of an arithmetic expres
sion.

All preprocessor directives begin with a pound sign (#), which must be the first
nonspace character on the line. They may appear anywhere in the source file
before, after, or intermingled with regular C language statements.

www.manaraa.com

The Preprocessor 317

Unlike C statements, a macro command ends with a newline, not a semicolon
(see Box 10-2). To span a macro over more than one line, enter a backslash
immediately before the newline, as in

#define LONG MACRO "This is a very long macro that\
spans two lines."

Box 10-1: ANSI Feature - Flexible Formatting of
Preprocessor Lines

Older compilers have trict requirement concerning the format of
preproces or commands. The pound sign mu t appear in column I, and
no space i allowed between the pound ign and the preprocessor com
mand. The ANSI Standard remove both of these re trictions. The only
con traint imposed by the ANSI Standard i that the pound ign mu t be
the fir t non pace or nontab character. The following commands, for
example, are upported by the ANSI Standard but may be illegal on
older compiler .

include <stdio . h>
include <ctype . h>

10.1 Macro Substitution
A macro is a name that has an associated text string, called the macro body. By
convention, macro names that represent constants should consist of uppercase
letters only. This makes it easy to distinguish macro names from variable names,
which should be composed of lowercase characters. In the following example,
B U F _LEN is the macro name and 512 is the macro body.

#define BUFF LEN (512)

When a macro name appears outside its definition it is replaced with its macro
body. The act of replacement is referred to as macro expansion. For example,
having defined BUFF_LEN, you might write

char buf[BUFF_LENJi

During the preprocessing stage, this line of code would be translated into

char buf [(512)] i

www.manaraa.com

318 Chapter 10

Box 10-2: Bug Alert - Ending a Macro Definition
With a Semicolon

One of the mo t common bugs is to place a emicolon at the end of a
macro definition, a in

#define SIZE 10 ;

The emicolon becomes part of the replacement string, so that a tate
ment like

x = SIZE ;

expands to

x = 10 ;;

Thi programming error will actually go unnoticed by the compiler,
which will interpret the econd emicolon as a null tatement. The
following, however, will cau e a compile-time par ing error:

int array[SIZE] ;

What make thi bug so difficult to find i that the line on which the
error i reported looks perfectly legal. The mo t pemiciou example of
this type of bug occur when the re ulting syntax, after replacement, i
legal but i emantically different from what wa intended. For exam
ple,

#define GOOD CONDITION (var 1);

while GOOD CONDITION
foo () ;

This expand to

while (var 1);
foo () ;

The emicolon after (val' == 1) i interpreted a a null statement and,
more important, a the body of the while loop. A a result, the call to
fooO is nOI part of the while body. If val' equals one, you will get an
infinite loop.

Most compilers have a command line option that let you execute just
the preproce sor. Thi makes it much ea ier to find thi type of bug
because you can in pect the ource code after all of the macros have
been expanded.

www.manaraa.com

The Preprocessor 319

The simplest and most common use of macros is to represent numeric constant
values. It is always bad practice to write constants in a source file since the
constant's purpose is lost. For example, consider the following:

static char in_buf[256];
main()
{

for (a = 0; a < 256 ; a++)
in_buf[a] getchar();

The two occurrences of 256 seem innocuous enough, but if the occurrences are
far apart in a large program, perhaps even in separate files, it becomes difficult to
maintain the program. If you want to change the array size, you need to find
every 256 in the program and then make sure that it's the right 256. A better
way to write the function is

#define MAX INPUT BUFFER SIZE 256 - -

static char in_buf[MAX_INPUT_BUFFER_SIZE];
main()
{

for (a = 0; a < MAX INPUT BUFFER SIZE a++)
in_buf[a] getchar();

As with choosing names for variables, it is important to choose a macro name
that corresponds to its use. According to the ANSI Standard, macro names are
unique up to at least 31 characters, so you should use as many characters as it
takes to describe the macro's function.

The preceding example illustrates a sirpple form of a macro, in which the macro
serves as a "name for a constant. There is another form of macros that is similar
to a C function in that it takes arguments that can be used in the macro body.
The syntax for this type of macro is shown in Figure 10-1.

www.manaraa.com

320 Chapter 10

macro
argument

Figure 10-1. Syntax of a Function-like Macro.

For example, you could write

#define MUL_BY_TWO(a) ((a) + (a))

Then you can use MUL_BY_TWO in your program just as you would use a
function. For example, the macro invocation

j = MUL_BY_TWO(5);

is translated by the preprocessor into

j = ((5) + (5));

The actual argument 5 is substituted for the formal argument a wherever it
appears in the macro body. The parentheses around a and around the macro
body are necessary to ensure correct binding when the macro is expanded (see
Box 10-7). There is actually some justification for this macro since it reduces a
multiplication operation into an addition operation, which is faster.

Note that macro arguments are not variables-they have no type, and no storage
is allocated for them. Consequently, macro arguments do not conflict with
variables that have the same name. The following, for example, is perfectly
legal:

j = MUL_BY TWO(a-l);

which, after expansion, becomes

j = ((a-l) + (a-l));

In general, macros execute more quickly than functions because there is none of
the function overhead involved in copying arguments and maintaining stack
frames. When trying to speed up slow programs, therefore, you should be on the
lookout for small, heavily used functions that can be implemented as macros.
For example, one of our first functions in this book (Chapter 3) was a function
that converts a letter from uppercase to lowercase. Assuming an ASCII charac
ter set, we can rewrite it as

www.manaraa.com

The Preprocessor 321

#define TO_LOWER (e) ((e) - ('a' - 'A'))

Converting functions to macros will have a noticeable impact on execution speed
only if the function is called frequently.

Box 10-3: Bug Alert - Using = to Define a Macro

A common mistake made in defming macros is to u e the a ignment
operator as if you were initializing a variable. In tead of writing

#define MAX 100

you write

#define MAX = 100

This type of mi take can lead to obscure bugs. For example, the expres
sion

for (j=MAX; j > 0 ; j--)

would expand to

for (j== 100 ; j > 0 ; j--)

Suddenly, the a ignment is turned into a relational expression. The
expre sion i legal, 0 the compiler will not complain, making the error
difficult to track down.

10.1.1 No Type Checking for Macro Arguments
From an operational point of view, the macro MUL _BY_TWO may seem identi
cal to the following function:

int mul_by two(a)
int a;

return a+a;

However, there is one significant difference-there is no type checking for
macros. In the function version of mul_by_two, you must pass an integral value,
and the function must return an into In the macro version, you can substitute any
type of value for a.

www.manaraa.com

322 Chapter 10

Suppose, for example, that/is a float variable. If you write

the preprocessor translates it into

f= ((2.5) + (2.5)) ;

which assigns the value 5.0 to f In contrast, if you write

the compiler takes one of two actions, depending on whether function prototypes
are being used. In the presence of prototyping, the compiler converts 2.5 into an
int, giving it a value of 2; adds two and two together, and returns 4 instead of
5.0. Without function prototypes, the compiler passes a double-precision 2.5 to
the function, which interprets it as an into This produces unpredictable results.

Box 10-4: Bug Alert - Space Between Left
Parenthesis and Macro Name

Note in Figure 10-1 that the left parenthe is mu t come immediately after
the macro name, without any intervening pace. In ertion of a pace
u ually results in a compile-time error, but occa ionally obscure bug can
re ult. Consider the following macro:

The expre ion

expand to

j = - (xl + f ;

But watch what happen if we accidentally in ert a pace between the left
parenthe is and the macro name in the definition:

Now, the expre ion expand to

j = (a) - (a) + f (xl;

If a i a variable name and / i a function name, thi will look like a
perfectly legal expre sion to the compiler.

www.manaraa.com

The Preprocessor 323

The lack of type checking for macro arguments can be a powerful feature if used
with care. Consider the following macro, which returns the lesser of two argu
ments:

#define min (a, b) ((a) < (b) ? (a) : (b})

Note that this works regardless of whether a and b are integers or floating-point
values. It is extremely difficult to write an equivalent function that works for all
data types.

Another difference between macros and functions is that the preprocessor checks
to make sure that the number of arguments in the definition is the same as the
number of arguments in the invocation. The C compiler does this type of
checking for functions only if you use the ANSI prototyping syntax in the
function declaration. For example, the statement

would produce a compile-time error. The analogous statement

would produce a compile-time error only if the function is declared with the
ANSI prototyping syntax. Otherwise, this statement would compile without
errors but would produce unpredictable results when executed.

10.1.2 Removing a Macro Definition

Once defined, a macro name retains its meaning until the end of the source file,
or until it is explicitly removed with an #Under directive. The most typical use
of #Under is to remove a definition so you can redefine it (see Section 10.2.1).

According to the ANSI Standard and most existing C compilers, it is illegal to
redefine a macro without an intervening #Under statement, unless the two defini
tions are the same. This is a useful rule because it enables you to define the
same macro in different header files. If you include multiple header files (and
hence, multiple definitions of the same macro), your compiler will complain
only if the definitions conflict.

www.manaraa.com

324 Chapter 10

Box 10-5: ANSI Feature - Using a Macro Name in
Its Own Definition

Mo t older C compilers don ' t allow you to u e a macro name in the
body of it own definition. The following definition, for example,
would fail becau e the compiler would try to expand sqrt in the body:

#define sqrt(x) (x < 0) ? sqrt (-x) : sqrt (x)

The ANSI Standard upport thi syntax but state that if a macro name
appear in its own definition, it will not be expanded. Thi avoids the
problem of infinite expan ion. According to A SI rule , therefore, the
tatement

y = sqrt (5) ;

would expand to

y = ((5 < 0 ? sqrt (-5) : sqrt (5)) ;

As a re ult, the sqrr() function would be called with 5 as the argument.
Note that u ing a macro name in it own body make sense only if there i
a function with the same name.

10.1.3 Macros vs. Functions

Macros and functions are similar in that they both enable a set of operations to
be represented by a single name. Sometimes it is difficult to decide whether to
implement an operation as a macro or as a function. The following lists summa
rize the advantages and disadvantages of macros compared to functions.

Advantages

1. Macros are usually faster than functions since they avoid the function
call overhead.

2. The number of macro arguments is checked to match the definition.
(The C compiler also does this for functions if you use the new ANSI
prototyping syntax. However, this feature may not be available on your
compiler.)

3. No type restriction is placed on arguments so that one macro may serve
for several data types.

www.manaraa.com

The Preprocessor 325

Disadvantages

1. Macro arguments are reevaluated at each mention in the macro body,
which can lead to unexpected behavior if an argument contains side
effects (see Box 10-6).

2. Function bodies are compiled once so that multiple calls to the same
function can share the same code without repeating it each time. Mac
ros, on the other hand, are expanded each time they appear in a
program. As a result, a program with many large macros may be longer
than a program that uses functions in place of the macros.

3. Though macros check the number of arguments, they don't check the
argument types. ANSI function prototypes check both the number of
arguments and the argument types.

4. It is more difficult to debug programs that contain macros because the
source code goes through an additional layer of translation, making the
object code even further removed from the source code.

Box 10-6: Bug Alert - Side Effects in Macro
Arguments

A potential hazard of macros involve side effect operator in argument
expre ions. Suppo e, for instance, that we invoke the min macro
follows:

a = min (b++ , c);

The preprocessor tran late thi into

a = ((b++) < (c) ? (b++) : c);

If bile than c, it gets incremented twice, obviou Iy not what i
intended. To be on the safe side, you should never u e a ide effect
operator in a macro invocation. Side effect operator include the incre
ment and decrement operator , the assignment operator , and function
invocation .

www.manaraa.com

326

Box 10-7: Bug Alert - Binding of Macro
Arguments

Chapter 10

A potential problem with macros is that argument expre ions that are
not carefully parenthe ized can produce erroneou re ults due to opera
tor precedence and binding. Consider the following macro:

#define square (a) a * a

square ha the advantage that it will work regardle s of the argument
data type . However, watch what happens when we pas it an arithme
tic expre ion:

j = 2 * square (3 + 4) ;

expand to

j = 2 * 3 + 4 * 3 + 4 ;

Because of operator precedence, the compiler interprets this expres ion
a

j = (2 * 3) + (4 3) + 4 ;

which assign the value of 22 to}. instead of 98. To avoid this problem,
you hould alway enclose the macro body and macro arguments in
parenthe e :

#define square (a) ((a) * (a »

ow, the macro invocation expand to

j = 2 * ((3 + 4) * (3 + 4»;

which produce the correct re ult.

10.1.4 Built-In Macros
The ANSI Standard defines five macro names that are built into the preproces
sor. Each name begins and ends with two underscore characters. You may not
redefine or #Undef these macros. (These macros may not be supported by older
compilers.)

LINE

FILE

Expands to the source file line number on which it is in
voked.

Expands to the name of the file in which it is invoked.

www.manaraa.com

The Preprocessor 327

TIME Expands to the time of program compilation.

DATE Expands to the date of program compilation.

Expands to the constant I if the compiler conforms to
the ANSI Standard.

The _LINE_and _FILE_macros are available in most older compilers. The
TIME, _DATE_, and STDC macros are more recent ANSI additions
to the C preprocessor.

The _LINE_ and _FILE_ macros are valuable diagnostic tools. Suppose,
for example, that you want a check facility that compares two expressions for
equality and, if they are unequal, calls an error reporting function with the source
filename and the line number of the check failure.

#define CHECK(a, b) \
if «a) != (b» \

fail(a, b, FILE

void fail(a, b, p, line)
int a, b, line;
char *p;
{

LINE

printf("Check failed in file %s at line %d:\
received %d, expected %d\n", p, line, a, b);

At various points in a program, you can check to make sure that a variable x
equals zero by including the following diagnostic:

CHECK (x, 0);

The _DATE_and _TIME_macros are useful for recording the date and time
a file was last compiled. For instance,

void print_version«)
{

printf("This utility compiled on %s at %s\n",
DATE TIME);

The _ STDC _ macro, if it expands to I, signifies that the compiler conforms to
the ANSI Standard. If it expands to any other value, or if it is not defined, you
should assume that the compiler does not conform to the ANSI Standard.
Section 10.2 illustrates a common use of this macro.

www.manaraa.com

328 Chapter 10

Box 10-8: ANSI Feature - String Producer

One of the limitations of the preproce or de cribed in the K&R stan
dard i that there is no way to treat a serie of character a both a string
and an expre ion. With an A SI-conforming compiler, you can obtain
[hi behavior by using the preprocessor token #, which forces the
preproce or to urround the next replacement argument with double
quote . For example,

#define str (s) #s

The tatement

printf (str(This is a string))i

expands to

printf (" This is a string")i

Con ider the following ASSERT macro, which treats it argument a
both an expre ion and a tring:

#define ASSERT(b) if (! b) \
{\

printf(" The following \
condition failed : %s\n", #b) ; \

exit(1 li \
}

Now you can invoke ASSERT as follows:

ASSERT (array-ptr < array_start + array_size) i

If the expre ion i fal e (that is, if array ytr point to an addre beyond
the array), the program will print the following message and then exit:

The following condition failed :
array_ptr < array_start + array_size

Note that ince preproce or command are terminated by newline, we
use backsla hes to continue the definition of ASSERT onto more than one
line.

www.manaraa.com

The Prepr.ocessor

Box 10-9: ANSI Feature - Token Pasting

The ANSI Standard defme a new preproce or operator (##) that
pastes two token . For example,

329

*define FILENAME (extension test ** extension

The sequence

FILENAME (bak)

expand to

test bak

Note that you cannot obtain thi behavior without u ing the paste opera
tor. For example,

*define FILENAME (extension) test_ext ension

doe not work because lest extension is con idered to be a ingle identi
fier and macro expansion does not occur within identifier .

Here ' another example using the token pa ting operator:

*define READ (type} (file_**type == NULL? \
open_*#typeU_file (), read Utype () : \
read_*Hype ())

This macro is useful for reading element from file . If the file i not
already opened (i.e. ,Jile_##type == NULL) the macro will open and
then invoke the read_##type() function; otherwi e it invoke
read _ ##type without opening the file. For example,

s = READ (player);

expand to

s = file_player == NULL? open_file_player (),
read_player () : read_player ());

Thi i equivalent to

if (file_player == NULL)
{

open_file_player ();
s = read_player ;

else
s = read_player ;

www.manaraa.com

330 Chapter 10

10.2 Conditional Compilation
The preprocessor enables you to screen out portions of source code that you
don't want compiled. This is done through a set of preprocessor directives that
are similar to the if and else statements in the C language. The preprocessor
versions are #if, #else, #elif, and #endif. The syntax for using these directives is
shown in Figure 10-2.

conditional
expression

conditional
expression

Figure 10-2. Syntax of Conditional Compilation Directives.

www.manaraa.com

The Preprocessor

For example,

#it x == 1
#undef x
#define x 0

#elif x == 2
#undef x
#define x 3

#else
#define y 4

#endif

331

The conditional expression in an #if or #elif directive must be a constant expres
sion, so x must be a macro. If it expands to 1, it is redefined to expand to zero.
If it expands to 2, it is redefined to expand to 3. Otherwise, x remains un
changed, but a new macro named y is defined. This example illustrates a number
of differences between the preprocessor conditional statements and the C lan
guage conditional statements:

• The conditional expression in an #if or #elif statement need not be
enclosed in parentheses. (Parentheses may optionally be included.)

• The #elif directive, which is not supported by K&R, is analogous to the
C language else if construct.

• Blocks of statements under the control of a conditional preprocessor
directive are not enclosed in braces. Instead, they are bounded by an
#elif, #else, or #endif statement.

• Every #if block may contain any number of #elif blocks, but no more
than one #else block, which should be the last one.

• Every #if block must end with an #endif directive.

In addition to these differences, there are other rules governing conditional
preprocessor directives that are not apparent from our example:

• The conditional expression following an #if or #elif statement must be a
constant expression. Normal arithmetic conversions take place. (Ac
cording to the ANSI Standard, all constants in a conditional expression
are converted to long int. In most previous versions of C, constants in
conditional expressions obey the same type rules as other constants.)

• Any macros in the conditional expression are expanded before the ex
pression is evaluated.

• If a conditional expression contains a name that has not been defined, it
is replaced by the constant zero. For example, the sequence

www.manaraa.com

332

#undef x
#it x

expands to

#it 0

Chapter 10

(This is how undefined names are handled in the ANSI Standard. Some
compilers, however, report an error if you use an undefined name.)

• Conditional preprocessor directives may be nested with the same se
mantics as nested if statements.

In our examples so far, the statements within the conditional blocks are them
selves preprocessor statements, but this is not a restriction. They could just as
easily be C language statements. In fact, conditional compilation is particularly
useful during the debugging stage of program development since you can turn
sections of code on or off by changing the value of a macro. The following
snippet is from the C interpreter program that we develop in Chapter 12:

#if DEBUG
if (exp_debug)
{

#endif

printf("lhs = ");
print_value (result);
printf(" rhs = ");
print_value (&rvalue);
printf("\n");

If the macro DEBUG is a nonzero value, the if statement and printf() calls will
be compiled. If DEBUG is zero, these statements will be ignored as if they were
a comment. If DEBUG is not defined, it is the same as if it were defined to
expand to zero.

Most compilers have a command line option that lets you define macros before
compilation begins. Most C compilers that run under UNIX and MS-DOS, for
example, contain a -D option for defining macros. To receive debug informa
tion, you would define the macro DEBUG to be some nonzero value:

cc -DDEBUG=l test

www.manaraa.com

The Preprocessor 333

Note that the #if and #endif directives control whether the enclosed C statements
are compiled, not necessarily whether they are executed. In the above example,
the printf() calls are executed only if the exp _debug variable has a nonzero value.
This double-layer approach enables you to include the diagnostic statements in
the executable program but still decide each time you run the program whether
you want them executed. If for the final version you need to reduce the size of
the executable program, you can compile it with DEBUG set to zero.

Another common use of the conditional compilation mechanism is to choose
between the old function declaration syntax and the new ANSI prototyping
syntax:

#if STDC == 1)

extern int foo(char a, float b);
extern *char goo(char *string);

#else
extern int foo();
extern *char goo();

#endif

If the compiler conforms to the ANSI standard (_ STDC _ equals I), we use the
prototyping syntax to declare the types of each argument. Otherwise, we use the
old function declaration syntax.

10.2.1 Testing Macro Existence

The #if and #elif directives enable you to compile code conditionally based on
the value of an arithmetic expression. You can also specify conditional compila
tion based on the existence or nonexistence of a macro using #ifdef, #ifndef, and
#endif. For example,

#ifdef TEST
printf("This is a test.\n");

#else
printf("This is not a test.\n");

#endif

If the macro TEST is defined, the first printf() call will be compiled. If TEST is
not a defined macro, the second printf() call is compiled. Note that it doesn't
matter what TEST expands to, only whether it exists or not. As with #if and
#elif, an #ifdef and #ifndef block must be terminated by an #endif statement.

www.manaraa.com

334 Chapter 10

Another way to write the previous example is to use the preprocessor defined
operator (an ANSI extension):

#if defined TEST

or

#if defined (TEST)

The parentheses around the macro name are optional. By definition,

#if defined macro name

is equivalent to

i f de f macro name

And the directive

#if ! defined macro name

is equivalent to

#ifndef macro name

In most instances, you can use #if instead of #ifdef and #ifndef, since the macro
name expands to zero if it is not defined. The one exception where you need to
use #ifdef or #ifndef is when the macro is defined to zero. For example, you
may want to define the macro FALSE to expand to zero. If you use an #if
directive to test whether FALSE is defined, FALSE will be redefined even if it is
already defined to expand to zero. More important, it won't be redefined if it is
defined to something other than zero.

#if !FALSE
define FALSE 0
#endif

You can avoid both of these problems by using #ifndef.

#ifndef FALSE
define FALSE 0

#elif FALSE
undef FALSE
define FALSE 0

#endif

www.manaraa.com

The Preprocessor 335

10.3 Include Facility
You have already been introduced to the #include directive as a means for
inserting source code into a file. This section describes #include in more detail.

The #include command has two forms:

#include <filename>

or

incl ude "filename"

If the filename is surrounded by angle brackets, the preprocessor looks in a list
of implementation-defined places for the file. (In UNIX systems, standard
include files are often located in the directory lusr/include.) If the file name is
surrounded by double quotes, the preprocessor looks for the file according to the
file specification rules of the operating system. If the preprocessor can't find the
file there, it searches for the file as if it had been enclosed in angle brackets.

The #include command enables you to create common definition files, called
header files, to be shared by several source files. Header files traditionally have
a .h extension and contain data structure definitions, macro definitions, and any
global data necessary for modules to communicate with each other. You should
use header files to place common information in one place instead of duplicating
it in each source module. This greatly simplifies the initial programming as well
as the subsequent maintenance and modification. It also ensures that program
mers working on different parts of a project do not use the same name in
conflicting ways.

The C extern declaration is tailored to this sharing of a common definition file
since you can redeclare the same extern variable any number of times, so long as
the data type remains the same. Note, however, that most compilers do not allow
you to initialize a global variable more than once. As a result, extern declara
tions that appear in an include file should not contain an initializer. Instead, you
should choose a single file in which to enter the initialization. It is a good idea to
enter a comment in the header file stating where the global variable is initialized
and what the initial value is. For example, the header file might contain the
declaration

/* Initialized to 1 in start.c */
extern int page_num;

In the source file start. c, you would write

int page_num = 1;

www.manaraa.com

336 Chapter 10

Operating systems such as UNIX supply many header files that describe struc
tures internal to the operating system. The C runtime library also includes a
number of header files that must be included in order to invoke associated
functions. See Appendix A for more information about runtime library header
files.

10.4 Line Control
The ANSI Standard defines a preprocessor directive called #line that allows you
to change the compiler's knowledge of the current line number of the source file
and the name of the source file.

Figure 10-3. Syntax of the #line Directive.

The syntax for #line is shown in Figure 10-3. The line number that you enter
represents the line number of the next line in the source file. Most compilers use
this number when they report an error and source-level debuggers make use of
line numbers. The following example illustrates the behavior of #line.

/* Example of the #line preprocessor directive
*/

main ()
{

printf("Current line: %d\nFilename: %s\n\n",
LINE FILE)i

#line 100
printf("Current line: %d\nFilename: %s\n \ n",

LINE , FILE) i
#line 200 "new name"

printf("Current line: %d\nFilename: %s\n\n",
LINE FILE)i

exit(O)i

www.manaraa.com

The Preprocessor 337

Assuming that the source file for this program is called line Jxampie.c, execu
tion produces

Current line: 7
Filename: line_example.c

Current line: 101
Filename: line_example.c

Current line: 201
Filename: new name

The preprocessor evaluates _LINE_before deleting comments. However, if an
#include directive appears before an occurrence of _LINE _, the preprocessor
inserts the include file before computing the value of _LlNE_.

The #line feature is particularly useful for programs that produce C source text.
For instance, yacc (which stands for Yet Another Compiler Compiler) is a UNIX
utility that facilitates building compilers. yacc reads files written in the yacc
language and produces a file written in the C language, which can then be
compiled by a C compiler. A problem arises, however, if the C compiler
encounters an error in the yacc-produced C file. You want to know which line in
the original yacc file is causing the error, but the C compiler will report the
error-producing line in the C text file. To solve this problem, yacc writes #line
directives in the C source file so that the compiler is fooled into reporting errors
based on the yacc line numbers rather than the C line numbers.

Box 10-10: ANSI Feature - The #error Directive

The ANSI #error djrective enable you to report error during the
preproce ing stage of compilation. Whatever text follow the #error
command will be sent to the tandard error device (u ually your termi
nal). Typically, it is used to check for illegal conditional compilation
value. For example,

#if INTSIZE < 16
error INTSIZE too small
#endif

If you attempt to compile a file with

cc -DINTSIZE=8 test . c

you will receive the error message

INTSIZE too small

www.manaraa.com

338 Chapter 10

Box 10-11 : ANSI Feature - The #pragma Directive

The ANSI #pragma directive perfonn implementation- pecific tasks.
Every compiler is free to upport pecial names that have implementa
tion-defined behavior when preceded by #pragma. For instance, a
compiler might upport the names NO _SIDE_EFFECTS and
END _NO _SIDE_EFFECTS, which infonn the compiler whether it need
to worry about ide effect for a certain block of tarement. This infor
mation can help the compiler generate better-optimized machine code. In
the following nippet, for instance, the compiler i free to assign 2 to *p
before the call to fn() because the programmer has guaranteed that fnO

will not produce ide effect that might affect *p:

#pragma NO_SlOE_EFFECTS
a = fn (X , 2);
*p = 2 ;

#pragma END NO SIDE EFFECTS

Check the documentation for your compiler to see if it upports any
pecial #pragma directive .

www.manaraa.com

The Preprocessor

Exercises
1. Give the translation of the following macros:

a) #define BUFFSIZE 1024
int buf[BUFFSIZE+1];

b) #define a(b) b+1
a(l) + 1

c) #define a (b) b+1
a(l) + 1

d) #define cos (x) *cos(x)
cos (x) + cos(cos(y)+l)

e) #define min (x, y) ((x) >= (y) ?x: y)
min(l,min(a,b))

f) #define DO BIG BUFFERS
#define 10 FLAGS Ox5C
#define 10 NO ODD BOUND 4
#define DO BIG BUFFERS

339

#if defined (BIG_BUFFERS) && (10 FLAGS & \
IO_NO ODD_BOUND)

input stream = big_buf init();
stream_align (input stream);

#else
input stream

#endif

2. Write macros to do the following:

a) Set the nth bit of char array but to val:

SET _BIT(buf, n, val)

b) Get the value of the nth bit of char array buf:

GET _BIT(buf, n)

www.manaraa.com

340 Chapter 10

3. Write a macro called MYGETC(fd), wherefd is type FILE_DESCRIP
TOR (see below). The macro will read a character from a buffer. If the
buffer is empty, the macro must use

read(int fileChannel, char *buf, int len)

to fill the buffer.

You can assume that

1. openO has been called onfd
2. fd->fileChannel is valid
3. fd->currentBufPointer == o.

Use the definitions in the following header file.

/* myio.h */
#define FILE BUF LEN (512)

typedef struct
{

int fileChannel;
char *buf;
char *currentBufPointer;
FILE_DESCRIPTOR;

4. Write a macro called MYPUTc(fd, c) to write to the buffer in file
descriptor fd. If the buffer is full, use

write (int fileChanel, char buf, int len)

to write it. Use "myio.h" above and the same assumptions aboutfd as in
Exercise 3.

5. Write a macro ABS(x) that expands to the absolute value of its argument
x. Why might it be more efficient than a function call? Why might it
be less efficient?

www.manaraa.com

Chapter 11

Input and Output

In good writing, words become one with things. -
Emerson, Journals

File I/O is one of the trickiest aspects of any programming language because it is
integrated so closely with the operating system. Operating systems vary greatly
in the way they allow access to data in files and devices. This variation makes it
extremely difficult to design I/O capabilities that are portable from one
implementation of a programming language to another.

The C language performs I/O through a large set of runtime routines. Many of
these functions were first described in the K&R standard. Others are derived
from the UNIX I/O library. Historically, there has always been some overlap
between these two libraries, although the "C library" deals mostly with buffered
I/O while the UNIX library performs unbuffered I/O.

The ANSI Committee blended these two libraries, preserving some functions,
deleting some functions, and modifying others. The most significant change is
the elimination of unbuffered I/O functions. In the ANSI library, all I/O
functions are buffered, although you have the capability to change the buffer
size. In addition, the ANSI I/O functions make a distinction between accessing
files in binary mode and accessing them in text mode. In UNIX environments,
this distinction is moot because the UNIX operating system treats binary and text
files the same. In some other operating systems, the distinction is extremely
important.

www.manaraa.com

342 Chapter 11

The Standard C Library contains nearly forty functions that perform I/O
operations. They can be divided into several groups, as shown in Tables 11-3
through 11-5. Appendix A describes each function detail. The remainder of this
chapter provides more general information. We use the ANSI Standard as the
basis of our discussion.

11.1 Streams
C makes no distinction between devices such as a terminal or tape drive and
logical files located on a disk. In all cases, I/O is performed through streams that
are associated with the files or devices. A stream consists of an ordered series
of bytes. You can think of it as a one-dimensional array of characters, as shown
in Figure 11-1. Reading and writing to a file or device involves reading data
from the stream or writing data onto the stream.

CPROGRAM

FILE

Figure 11-1. Streams. C Programs access data on files through
one-dimensional arrays of characters called streams.

To perform I/O operations, you must associate a stream with a file or device. You
do this by declaring a pointer to a structure type called FILE. The FILE
structure, which is defined in the stdio.h header file, contains several fields to
hold such information as the file 's name, its access mode, and a pointer to the
next character in the stream. These fields are assigned values when you open the
stream and access it, but they are implementation dependent, so they vary from
one system to another.

www.manaraa.com

Input and Output 343

The FILE structures provide the operating system with bookkeeping
information, but your only means of access to the stream is the pointer to the
FILE structure (called afile pointer). The file pointer, which you must declare in
your program, holds the stream identifier returned by the fopen() function. You
use the file pointer to read from, write to, or close the stream. A program may
have more than one stream open simultaneously, although each implementation
imposes a limit on the number of concurrent streams.

One of the fields in each FILE structure is afile position indicator that points to
the byte where the next character will be read from or written to. As you read
from and write to the file, the operating system adjusts the file position indicator
to point to the next byte. Although you can't directly access the file position
indicator (at least not in a portable fashion), you can fetch and change its value
through library functions, thus enabling you to access a stream in nonserial order.

Do not confuse the file pointer with the file position indicator. The file pointer
identifies an open stream connected to a file or device. The file position
indicator refers to a specific byte position within a stream.

11.1.1 Standard Streams
There are three streams that are automatically opened for every program. Their
names are stdin, stdout, and stderr. Usually, these streams point to your
terminal, but many operating systems permit you to redirect them. For example,
you might want error messages written to a file instead of the terminal.

The I/O functions already introduced, printf() and scanf() for example, use these
default streams. printf() writes to stdout, and scanf() reads from stdin. You
could use these functions to perform I/O to files by making stdin and stdout point
to files (with the freopen() function). An easier method, however, is to use the
equivalent functions, fprintf() and fscanf(), which enable you to specify a
particular stream.

11.1.2 Text and Binary Formats
Data can be accessed in one of two formats: text or binary. (Implementations
may support additional formats, but they are not required by the ANSI Standard
to do so.) A text stream consists of a series of lines, where each line is
terminated by a newline character. However, operating systems may have other
ways of storing lines on disks and tapes, so each line in a text file does not
necessarily end in a newline character. Many IBM systems, for instance, keep
track of text lines through an index of pointers to the beginnings of each line. In
this scheme, the files stored on disk or tape may not contain newline characters
even though they are logically composed of lines. When these lines are read into
memory in text mode, however, the runtime functions automatically insert

www.manaraa.com

344 Chapter 11

newlines into the text stream. Likewise, when lines are written from a text
stream to a mass storage device, the I/O functions may replace new lines in the
stream with implementation-defined characters that get written to the I/O device.
In this way, C text streams have a consistent appearance from one environment
to another, even though the format of the data on the mass storage devices may
vary.

Despite these rules, which promote portability to some extent, you should be
extremely careful when performing textual I/O. Programs that work on one
system may not work exactly the same way on another. In particular, the rules
described above hold true only for printable characters (including tabs, form
feeds, and newlines.) If control characters appear in a text stream, they are
interpreted in an implementation-defined manner.

In binary format, the compiler performs no interpretation of bytes. It simply
reads and writes bits exactly as they appear. Binary streams are used primarily
for nontextual data, where there is no line structure and it is important to
preserve the exact contents of the file. If you are more interested in preserving
the line structure of a file, you should use a text stream. The three standard
streams, for example, are all opened in text mode.

As we mentioned earlier, in UNIX environments the distinction between text and
binary modes is moot since UNIX treats all data as binary data. However, even
if you are programming in a UNIX environment, you should be thinking about
potential difficulties in porting your program to other systems.

11.2 Buffering
Compared to memory, secondary storage devices such as disk drives and tape
drives are extremely slow. For most programs that involve I/O, the time taken to
access these devices overshadows the time the CPU takes to perform operations.
It is extremely important, therefore, to reduce the number of physical read and
write operations as much as possible. Buffering is the simplest way to do this.

A buffer is an area where data is temporarily stored before being sent to its
ultimate destination. Buffering provides more efficient data transfer because it
enables the operating system to minimize accesses to I/O devices.

All operating systems use buffers to read from and write to I/O devices. That is,
the operating system accesses I/O devices only in fixed-size chunks, called
blocks. Typically, a block is 512 or 1024 bytes. This means that even if you
want to read only one character from a file, the operating system reads the entire
block on which the character is located. For a single read operation, this isn't
very efficient, but suppose you want to read 1000 characters from a file. If I/O
were unbuffered, the system would perform 1000 disk seek and read operations.
With buffered I/O, on the other hand, the system reads an entire block into
memory and then fetches each character from memory when necessary. This
saves 999 I/O operations.

www.manaraa.com

Input and Output 345

The C runtime library contains an additional layer of buffering, which comes in
two forms: line buffering and block buffering.

In line buffering, the system stores characters until a newline character is
encountered, or until the buffer is filled, and then sends the entire line to the
operating system to be processed. This is what happens, for example, when you
read data from the terminal. The data is saved in a buffer until you enter a
newline character. At that point, the entire line is sent to the program.

In block buffering, the system stores characters until a block is filled and then
passes the entire block to the operating system. The size of a block is defined by
the operating system but is typically 512 or 1024 bytes. By default, all I/O
streams that point to a file are block buffered. Streams that point to your
terminal (stdin and stdout) are either line buffered or unbuffered, depending on
the implementation.

The C library standard I/O package includes a buffer manager that keeps buffers
in memory as long as possible. So if you access the same portion of a stream
more than once, there is a good chance that the system can avoid accessing the
I/O device multiple times. Note, however, that this can create problems if the
file is being shared by more than one process. For interprocess synchronization,
you need to write your own assembly language functions or use system functions
supplied with the operating system.

In both line buffering and block buffering, you can explicitly direct the system to
flush the buffer at any time (with the fflush() function), sending whatever data is
in the buffer to its destination.

Although line buffering and block buffering are more efficient than processing
each character individually, they are unsatisfactory if you want each cQaracter to
be processed as soon as it is input or output. For example, you may want to
process characters as they are typed rather than waiting for a newline to be
entered. C allows you to tune the buffering mechanism by changing the default
size of the buffer. In most systems, you can set the size to zero to tum buffering
off entirely. Section 11.8 describes unbuffered I/O in greater detail.

www.manaraa.com

346 Chapter 11

11.3 The <stdio.h> Header File
To use any of the I/O functions, you must include the stdio.h header file. This
file contains:

• Prototype declarations for all the I/O functions.

• Declaration of the FILE structure.

• Several useful macro constants, including stdin, stdout, and stderr.

Another important macro is EOF, which is the value returned by many functions
when the system reaches the end-of-file marker. Historically, stdio.h is also
where NUU, the name for a null pointer, is defined. The ANSI Committee,
however, moved the definition of NULL to a new header file called stddefh. To
use NULL, therefore, you must either include stddefh or define NUU yourself:

Ufndef NULL
#define NULL (void *) 0

#endif

11.4 Error Handling
Each I/O function returns a special value if an error occurs. The error value,
however, varies from one function to another. Some functions return zero for an
error, others return a nonzero value, and some return EOF. Read the function
description in Appendix A to see what value it returns for an error.

There are also two members of the FILE structure that record whether an error or
end-of-file has occurred for each open stream. End-of-file conditions are
represented differently on different systems. Some systems have a special
character that denotes the end of a file, while others use some method of
counting characters to determine when the end of a file has been reached. In
either case, an attempt to read data past the end-of-file marker will cause an
end-of-file condition. A stream's end-of-file and error flags can be checked via
the/eof() and/error() functions, respectively. In a few instances, an I/O function
returns the same value for an end-of-file condition as it does for an error
condition. In these cases, you need to check one of the flags to see which event
actually occurred.

The following function checks the error and end-of-file flags for a specified
stream and returns one of four values based on the results. The clearerr()
function sets both flags equal to zero. You must explicitly reset the flags with
clearerr()--they are not automatically reset when you read them, nor are they
automatically reset to zero by the next I/O call. They are initialized to zero when
the stream is opened, but the only way to reset them to zero is with clearerr().

www.manaraa.com

Input and Output

/* If neither flag is set, stat will equal zero.
* If error is set, but not eof, stat equals 1.
* If eof is set, but not error, stat equals 2.
* If both flags are set, stat equals 3.
*/

#include <stdio.h>
#define EOF FLAG 1
#define ERR FLAG 2

char stream_stat (fp
FILE *fp;

char stat 0;

if (ferror(fp))
stat 1= ERR_FLAG;

if (feof (fp))
stat 1= EOF_FLAG;

clearerr();
return stat;

11.4.1 The errno Variable

347

In addition to the end-of-file and error flags, there is a global variable called
errno that is used by a few of the I/O functions to record errors. A UNIX
hand-me-down, errno is an integer variable declared in the errno.h header file.
The errno variable is primarily used for math functions; very few of the I/O
functions make use of errno. For more information about errno, see Appendix
A.

www.manaraa.com

348 Chapter 11

11.5 Opening and Closing a File

Before you can read from or write to a file, you must open it with the Jopen()
function. Jopen() takes two arguments-the fIrst is the fIle name and the second
is the access mode. There are two sets of access modes--one for text streams and
one for binary streams. The text stream modes are shown in Table 11-1. The
binary modes are exactly the same, except that they have a b appended to the
mode name. To open a binary fIle with read access, for example, you would use
"rb".

"r"

"w"

"a"

"r+"

"w+"

"a+"

Open an existing text file for reading. Reading
occurs at the beginning of the file.

Create a new text file for writing. If the file
already exists, it will be truncated to zero
length. The fIle position indicator is initially
set to the beginning of the file.

Open an existing text file in append mode. You
can write only at the end-of-file position. Even
if you explicitly move the fIle position indica
tor, writing still occurs at the end-of-fIle.

Open an existing text file for reading and writ
ing. The fIle position indicator is initially set to
the beginning of the file.

Create a new text file for reading and writing.
If the file already exists, it will be truncated to
zero length.

Open an existing fIle or create a new one in
append mode. You can read data anywhere in
the fIle, but you can write data only at the
end-of-file marker.

Table 11-1. fopenO Text Modes.

www.manaraa.com

Input and Output 349

Table 11-2 summarizes the properties of the jopen() modes.

r w a r+ w+ a+

File must exist before open * *
Old file truncated to zero length * *
Stream can be read * * * *
Stream can be written * * * * *
Stream can be written only at end

* *
Table 11-2. File and Stream Properties offopenO Modes.

jopen() returns a file pointer that you can use to access the file later in the
program. The following function opens a text file called test with read access.

#include <stddef.h>
#include <stdio.h>

FILE *open test();
{

FILE *fp;

/* Returns a pointer to FILE */
/* struct */

fp = fopen("test", "r");
if (fp == NULL)

fprintf(stderr, "Error opening file test\n");
return fp;

Note how the file pointer fp is declared as a pointer to FILE. The jopenO
function returns a null pointer (NULL) if an error occurs. If successful,fopenO
returns a nonzero file pointer. The fprintfO function is exactly like printfO,
except that it takes an extra argument indicating which stream the output should
be sent to. In this case, we send the message to the standard I/O stream stderr.
By default, this stream usually points to your terminal.

The open _test() function is written somewhat more verbosely than is usual.
Typically, the error test is combined with the file pointer assignment:

if ((fp = fopen("test","r")) == NULL)
fprintf(stderr, "Error opening file test\n");

www.manaraa.com

350 Chapter 11

Box 11-1: Bug Alert - Opening a File

In the tatement

if (fp = fopen(" test "," r ")) == NULL)
fprintf (stderr , "Error opening file test\n "

) ;

the parenlhe e around

fp fopen (" test ", " r N)

are nece ary because == has higher precedence than =. Without the
parentheses,fi) gets assigned zero or one, depending on whether the re ult of
fopen() i a null pointer or a valid pointer. Thi i a common programming
mi take.

The open _test() function is a little too specific to be useful since it can only
open one file, called test, and only with read-only access. A more useful
function, shown below, can open any file with any mode.

#include <stddef.h>
#include <stdio.h>

FILE *open_file(file_name, access mode

char *file name, *access_mode;

FILE *fp;
if «fp = fopen(file_name, access_mode)) == NULL)

fprintf(stderr, "Error opening file %s with access\

mode %s\n", file name, access mode);
return fp;

Our open _file() function is essentially the same as fopen(), except that it prints
an error message if the file cannot be opened.

www.manaraa.com

Input and Output

To open test from mainO, you could write

#include <stddef.h>
#include <stdio.h>

main()
{

extern FILE *open_file();

if ((open_file ("test", "r"))
exit (1);

351

NULL)

Note that the header files are included in both routines. You can include them in
any number of different source files without causing conflicts.

11.5.1 Closing a File
To close a file, you need to use the jclose() function:

fclose(fp);

Closing a file frees up the FILE structure that fp points to so that the operating
system can use the structure for a different file. It also flushes any buffers
associated with the stream. Most operating systems have a limit on the number
of streams that can be open at once, so it's a good idea to close files when you're
done with them. In any event, all open streams are automatically closed when
the program terminates normally. Most operating systems will close open files
even when a program aborts abnormally, but you can't depend on this behavior.
Moreover, networked systems tend to have a high overhead for closing streams
that you have explicitly opened if you neglect to close them yourself.

11.6 Reading and Writing Data
Once you have opened a file, you use the file pointer to perform read and write
operations. There are three degrees of I/O granularity. That is, you can perform
I/O operations on three different sizes of objects. The three degrees of
granularity are as follows:

• One character at a time

• One line at a time

• One block at a time

www.manaraa.com

352 Chapter 11

Each of these methods has some pros and cons. In the following sections, we
show three ways to write a simple function that copies the contents of one file to
another. Each uses a different degree of granularity.

One rule that applies to all levels of I/O is that you cannot read from a stream
and then write to it without an intervening call to fseek(), rewind(), or fflush().
The same rule holds for switching from write mode to read mode. These three
functions are the only I/O functions that flush the buffers.

11.6.1 One Character at a Time

There are four functions that read and write one character to a stream:

gete() A macro that reads one character from a stream.

fgete() Same as gete(), but implemented as a function.

pute() A macro that writes one character to a stream.

fpute() Same as puteO, but implemented as a function.

Note that gete() and pute() are usually implemented as macros whereas fgete()
and fpute() are guaranteed to be functions. Because they are implemented as
macros, pute() and gete() usually run much faster. In fact, on our machine, they
are almost twice as fast as fgete() and fpute(). Because they are macros,
however, they are susceptible to side effect problems (see Box 10-6). For
example, the following is a dangerous call that may not work as expected:

putc('x', fp[j++]);

If an argument contains side effect operators, you should use fgete() or fputeO,
which are guaranteed to be implemented as functions. Note that gete() and
pute() are the only library calls for which this caveat applies. For the rest of the
library, the ANSI Standard states that if a function is implemented as a macro, its
argument(s) may appear only once in the macro body. This restriction removes
side effect problems.

www.manaraa.com

Input and Output

The following example uses gete() and pute() to copy one file to another.

#include <stddef.h>
#include <stdio.h>
#define FAIL 0
#define SUCCESS 1

int copyfile(infile, outfile
char *infile, *outfile;

FILE *fpl, *fp2;

if ((fpl = fopen(infile, "rb")) == NULL)
return FAIL;

if ((fp2=fopen (outfile, "wb")) == NULL)
{

fclose (fpl);
return FAIL;

while (!feof(fpl))
putc(getc(fpl), fp2);

fclose (fpl);
fclose(fp2);
return SUCCESS;

353

We open both files in binary mode because we are reading each individual
character and are not concerned with the file's line structure. This function will
work for all files, regardless of the type of data stored in the file.

The gete() function gets the next character from the specified stream and then
moves the file position indicator one position. Successive calls to gete() read
each character in a stream. When the end-of-file is encountered, the feof()
function returns a nonzero value. Note that we cannot use the return value of
gete() to test for an end-of-file because the file is opened in binary mode. For
example, if we write

int c;
while ((c = getc(fpl)) != EOF)

the loop will exit whenever the character read has the same value as EOF. This
mayor may not be a true end-of-file condition. The feof() function, on the other
hand, is unambiguous.

www.manaraa.com

354 Chapter 11

11.6.2 One Line at a Time

Another way to write this function is to read and write lines instead of
characters. There are two line-oriented 1/0 functions-fgets() and fputsO. The
prototype for fgets() is

char *fgets(char *s, int n, FILE stream);

The three arguments have the following meanings:

s

n

stream

A pointer to the ftrst element of an array to
which characters are written.

An integer representing the maximum number of
characters to read.

The stream from which to read.

fgets() reads characters until it reaches a newline, an end-of-fIle, or the
maximum number of characters specifted. fgets() automatically inserts a null
character after the last character written to the array. This is why, in the
following copyfile() function, we specify the maximum to be one less than the
array size. fgets() returns NULL when it reaches the end-of-fIle. Otherwise, it
returns the first argument. The fputs() function writes the array identifted by the
ftrst argument to the stream identifted by the second argument.

One point worth mentioning is the difference between fgets() and gets() (the
function that reads lines from stdin.) Both functions append a null character
after the last character written. However, gets() does not write the terminating
newline character to the input array. fgets() does include the terminating
newline character. Also, fgets() allows you to specify a maximum number of
characters to read, whereas gets() reads characters indeftnitely until it encounters
a newline or end-of-fIle.

The following function illustrates how you might implement copyfile using the
line-oriented functions. Note that we open the fIles in text mode because we
want to access the data line by line. If we open the fIles in binary mode, the
fgets() function might not work correctly because it would look explicitly for a
newline character. The fIle itself mayor may not include newline characters. If
the fIle was written in text mode, it will contain newline characters only if that is
how the operating system denotes new lines. In text mode, fgets() uses the
implementation's definition of a newline.

www.manaraa.com

Input and Output

#include <stddef.h>
#include <stdio.h>

#define FAIL 0
#define SUCCESS 1
#define LINESIZE 100

int copyfile(infile, outfile
char *infile, *outfile;

FILE *fp1, *fp2;
char line[LINESIZE];

if ((fp1 = fopen(infile, Dr")) == NULL)
return FAIL;

if ((fp2 = fopen(outfile, Ow")) == NULL)
{

fclose(fp1);
return FAIL;

while (fgets (line, LINESIZE-1, fp1) != NULL)
fputs(line, fp2);

fclose (fp1);
fclose(fp2);
return SUCCESS;

355

You might think that the copyfite() version that reads and writes lines would be
faster than the version that reads and writes characters because it requires fewer
function calls. Actually, though, the version using getc() and putc() is
significantly faster. This is because most compilers implement fgets() and
fputs() using fputc() and fgetc(). Since these are functions rather than macros,
they tend to run more slowly.

11.6.3 One Block at a Time
In addition to character and line granularity, you can also access data in lumps
called blocks. You can think of a block as an array. When you read or write a
block, you need to specify the number of elements in the block and the size of
each element. The two block I/O functions are fread() and fwriteO. The
prototype for fread() is

size t fread(void *ptr, size t size, size t nmemb,
FILE *stream);

where size _t is an integral type defined in stdio.h.

www.manaraa.com

356 Chapter 11

The arguments represent the following data:

ptr A pointer to an array in which to store the data.

size The size of each element in the array.

nmemb The number of elements to read.

stream The file pointer.

fread() returns the number of elements actually read. This should be the same as
the third argument unless an error occurs or an end-of-file condition is
encountered.

The fwrite() function is the mirror image of freadO. It takes the same
arguments, but instead of reading elements from the stream to the array, it writes
elements from the array to the stream.

The following function shows how you might implement copyfile() using the
block I/O functions. Note that we test for an end-of: .. file condition by comparing
the actual number of elements read (the value returned from fread()) with the
number specified in the argument list. If they are different, it means that either
an end-of-file or an error condition occurred. We use the ferrorO function to
find out which of the two possible events happened. If an error occurred, we
print an error message and return an error code. Otherwise we return a success
code. For the finalfwrite() function we use the value of num Jead as the number
of elements to write, since it is less than BLOCKSIZE.

Note that we took extra care to write the function so that it would be easy to
modify. If we want to change the size of each element in the array, we need only
change the typedef statement at the top of the function. If we want to change the
number of elements read, we need only redefine BLOCKSIZE.

www.manaraa.com

Input and Output

#include <stddef.h>
#include <stdio.h>
#define FAIL 0
#define SUCCESS 1
#define BLOCKSIZE 512
typedef char DATA;

int copyfile(infile, outfile
char *infile, *outfile;

FILE *fp1,*fp2;
DATA block[BLOCKSIZE];
int num_read;

if «fp1 = fopen(infile, "rb" » == NULL)
{

printf("Error opening file %s for input.\n",
infile);

return FAIL;

if «fp2 = fopen (outfile, "wb" » == NULL)
{

357

printf("Error opening file %s for output.\n",
outfile);

fclose (fp1);
return FAIL;

while «num_read = fread(block, sizeof(DATA),
BLOCKSIZE, fp1 » == BLOCKSIZE)

fwrite(block, sizeof(DATA), num_read, fp2);

fwrite(block, sizeof(DATA), num_read, fp2);
fclose (fp1);
fclose(fp2);

if (ferror(fp1 »
{

printf("Error reading file %s\n", infile);
return FAIL;

return SUCCESS;

www.manaraa.com

358 Chapter 11

Like [puts() and fgets(), the block I/O functions are usually implemented using
[pute() and fgete() functions, so they are not as efficient as the macros pute() and
gete(). Note also that these block sizes are independent of the blocks used for
buffering. The buffer size, for instance, might be 1024 bytes. If the block size
specified in a read operation is only 512 bytes, the operating system will still
fetch 1024 bytes from the disk and store them in memory. Only the first 512
bytes, however, will be made available to the fread() function. On the next
fread() call, the operating system will fetch the remaining 512 bytes from
memory rather than performing another disk access. The block sizes in fread()
and fwrite() functions, therefore, do not affect the number of device I/O
operations performed.

11.7 Selecti ng an I/O Method

As we have shown with the different versions of eopyjiZe(), there are usually
multiple ways to perform an I/O task. Choosing the best method is a matter of
weighing pros and cons, paying special attention to simplicity, efficiency, and
portability.

From an efficiency standpoint, the macros pute() and gete() are usually fastest.
However, most operating systems have a means for performing very fast block
I/O operations that can be even faster than puteO and gete(). These capabilities,
however, are often not available through the C runtime library. You may need to
write assembly code or call operating system services. UNIX systems, for
example, provide routines called read() and write() , which perform efficient
block I/O transfers. If you think you may want to use system block I/O
operations in the future, it is probably a good idea to write the original C routines
using fread() and fwrite() since it will be easier to adapt these routines if they are
already block oriented.

Though efficiency is important, particularly with regard to I/O, it is not the only
consideration. Sometimes the choice of an I/O method boils down to a question
of simplicity. For example, fgets() and fputs() are relatively slow functions, but
it may be worth sacrificing some speed if you need to process entire lines.

www.manaraa.com

Input and Output 359

Consider a function that counts the number of lines in a file. UsingfgetsO and
fputs(), the function can be written very simply:

#include <stdio.h>
#include <stddef.h>
#define MAX LINE SIZE 120

int lines_in_file(fp
FILE *fp;

char buf[MAX_LINE SIZE];
int line num = 0;

rewind(fp); /* Moves the file position indicator
* to the beginning of the file.
*/

while (fgets(fp, MAX_LINE_SIZE, buf) != NULL)
line_num++;

return line_num;

You could also write this function using character or block I/O, but the function
would be more complex. If execution speed is not important, therefore, the
version above is the best.

The last, but certainly not the least, consideration in choosing an I/O method is
portability. In terms of deciding between character, line, or block I/O, portability
doesn't really playa role. Portability is a major concern, however, in choosing
between text mode and binary mode. If the file contains textual data, such as
source code files and documents, you should open it in text mode and access it
line by line. This will help you avoid many pitfalls if you port the program to a
different machine. On the other hand, if the data is numeric and does not have a
clear line structure, it is best to open it in binary mode and access it either
character by character or block by block.

www.manaraa.com

360 Chapter 11

11.8 Unbuffered 1/0
Although the C runtime library provides the means to change the buffer size, you
should use the capability with care. In most cases, the compiler developers have
chosen a default buffer size that is optimal for the operating system under which
the program will be run. If you change it, you may experience a loss of I/O
speed.

The one time when you need to tamper with the buffer size is when you want to
turn off buffering altogether. Typically, this occasion arises when you want user
input to be processed immediately. Normally, the stdin stream is line-buffered,
requiring the user to enter a newline character before the input is sent to the
program. For many interactive applications, this is unsatisfactory.

Consider, for example, a text editor program. The user may type characters as
part of the text or enter commands. For instance, the user could press an
up-arrow key to move the cursor to another line. The I/O functions must be
capable of processing each character as it is input, without waiting for a
terminating newline character.

To turn buffering off, you can use either the setbuf() function or the setvbuf()
function. The setbuf() function takes two arguments: the first is a file pointer,
and the second is a pointer to a character array which is to serve as the new
buffer. If the array pointer is a null pointer, buffering is turned off, as in

setbuf(stdin, NULL);

The setbuf() function does not return a value.

The setvbuf() function is similar to setbuf(), but it is a bit more elaborate. It
takes two additional arguments that enable you to specify the type of buffering
(line, block, or no buffering) and the size of the array to be used as the buffer.
The buffer type should be one of three symbols (defined in stdio.h):

IOFBF block buffering

IOLBF line buffering

IONBF no buffering

To tum buffering off, therefore, you would write

stat = setvbuf(stdin, NULL, _IONBF, 0);

The setvbuf() function returns a nonzero value if it is successful. If, for some
reason, it cannot honor the request, it returns zero. Consult Appendix A for
more information about these two functions.

www.manaraa.com

nd Output 361

11.9 Random Access
The previous examples accessed files sequentially, beginning with the fIrst byte
and accessing each successive byte in order. For a function such as copyjile(),
this is reasonable since you need to read and write each byte anyway. It's just as
fast to access them sequentially as any other way.

For many applications, however, you need to access particular bytes in the
middle of the file. In these cases, it is more efficient to use C's two random
access functions-fseek() andftell().

The fseek() function moves the file position indicator to a specifIed character in a
stream. The prototype for fseekO is

int fseek(FILE *stream, long int offset,
int whence);

The three arguments are

stream

offset

whence

A file pointer.

An offset measured in characters (can be positive or
negative).

The starting position from which to count the offset.

There are three choices for the whence argument, all of which are designated by
names defIned in stdio.h:

SEEK SET

SEEK CUR

SEEK END

The beginning of the file.

The current position of the file position indicator.

The end-of-file position.

For example, the statement

stat = fseek(fp, 10, SEEK_SET)

moves the file position indicator to character 10 of the stream. This will be the
next character read or written. Note that streams, like arrays, start at the zero
position, so character 10 is actually the 11 th character in the stream.

The value returned by fseek() is zero if the request is legal. If the request is
illegal, fseek() returns a nonzero value. This can happen for a variety of
reasons. For example, the following is illegal if fp is opened for read-only
access because it attempts to move the fIle position indicator beyond the
end-of-fIle position:

stat = fseek(fp, 1, SEEK_END)

Obviously, if SEEK_END is used with read-only fIles, the offset value must be
less than or equal to zero. Likewise, if SEEK_SET is used, the offset value must
be greater than or equal to zero.

www.manaraa.com

362 Chapter 11

For binary streams, the offset argument can be any positive or negative integer
value that does not push the file position indicator out of the file. For text
streams, the offset argument must be either zero or a value returned by ftell().

The ftell() function takes just one argument, which is a file pointer, and returns
the current position of the file position indicator. ftell() is used primarily to
return to a specified file position after performing one or more 1/0 operations.
For example, in most text editor programs, there is a command that allows the
user to search for a specified character string. If the search fails, the cursor (and
file position indicator) should return to its position prior to the search. This
might be implemented as follows:

cur-pos = ftell(fp);
if (search (string) == FAIL)

fseek(fp, cur_pas, SEEK_SET);

Note that the position returned by ftell() is measured from the beginning of the
file. For binary streams, the value returned by ftell() represents the actual
number of characters from the beginning of the file. For text streams, the value
returned by ftell() represents an implementation-defined value that has meaning
only when used as an offset to anfseekO call.

The example in the next section illustrates random access, as well as some of the
other I/O topics discussed in this chapter.

11.9.1 Printing a File in Sorted Order

Suppose you have a large data file composed of records. Let's assume that the
file contains one thousand records, where each record is a VITALSTAT structure,
as declared below:

#define NAME LEN 19
typedef char NAME[NAME_LEN];
typedef struct date {

unsigned day: 5,
month : 5,
year : 11;

} DATE;
typedef struct vitalstat
{

NAME vs_name;
char vs ssnum[ll];
DATE vS_date;
char vs jersey;

VITALSTAT;

www.manaraa.com

Input and Output 363

Suppose further that the records are arranged randomly, but you want to print
them alphabetically by the name field. First, you need to sort the records.

There are two ways to sort records in a file. One is to actually rearrange the
records in alphabetical order. However, there are several drawbacks to this
method. One drawback is that you need to read the entire file into memory, sort
the records, and then write the file back to the storage device. This requires a
great deal of I/O power. It also requires a great deal of memory since the entire
file must be in memory at once. (There are ways to sort a file in parts, but they
are complex and require even more I/O processing.) Another drawback is that if
you add records in the future, you need to repeat the entire process.

The other sorting solution is to read only the part of the record that you want to
sort (called the key) and pair each key with a file pointer (called an index) that
points to the entire record in the file. Sorting the key elements involves less data
than sorting the entire records. This is called an index sort.

Suppose that the first five records have the following values.

Jordan, Larry
Bird, Michael
Erving, Isiah
Thomas, Earvin
Johnson, Julius

The key/index pairs would be

key

043-12-7895
012-45-4721
065-23-5553
041-92-1298
012-22-3365

index
o
1
2
3
4

Jordan, Larry
Bird, Michael
Erving, Isiah
Thomas, Earvin
Johnson, Julius

5-11-1954
3-24-1952
11-01-1960
1-21-1949
7-15-1957

Instead of physically sorting the entire records, we can sort the key/index pairs
by index value:

1
2
4

o
3

Bird, Michael
Erving, Isiah
Johnson, Julius
Jordan, Larry
Thomas, Earvin

www.manaraa.com

364 Chapter 11

The beauty of the indexing sort method is that you don't need to rearrange the
actual records themselves. You need only sort the index, which is usually a
smaller task (in our example, the records are so short that there isn't much
difference between sorting the records themselves and sorting the entries in the
index file). To figure out the alphabetical order, though, you do need to read in
the name field of each record.

The following function reads the key field of every record and stores them in an
array of structures that contain just two fields-the record id (index) and the key.

We assume that the data file has already been opened, so that the function is
passed a file pointer. The include file recs.h contains the following:

.include "vitalstat.h"

.include <stdio.h>

.include <stddef.h>

.define MAX REC NUM 1000

.define NAME LEN 19
typedef struct {

int index;
char key[NAME_LEN];
INDEX;

The function reads the first NAME_LEN characters of each record using fgets()
and stores them in the array names _index, then moves the file position indicator
to the beginning of the next record with fseek(). In this way, we avoid reading
extraneous parts of the record. In reality, of course, the I/O buffering mechanism
fetches biocks of 512 or 1024 characters, so the entire records are read anyway.
Within each buffer, however, we need only access the first field in each record.
This saves us memory-to-memory data copying time, even though we don't save
any device-to-memory processing time. For large records, which span blocks,
this approach could also save you device-to-memory processing time.

We include some error checking to ensure that the fseek() request is legitimate.
IffseekO returns an error that is not an end-of-file condition, we exit the program
with an error code. Otherwise, when an end-of-file condition exists, we return
the number of records read, which is also the number of index fields stored in the
array.

www.manaraa.com

Input and Output 365

/*

*
Reads up to max_rec_num records from a file and
stores the key field of each record

* in an index array. Returns

* the number of key fields stored.
*/

linclude "recs.h"

int get_records(data_file, names_index,
max_rec_num)

FILE *data_file;
INDEX names_index[];
int max_rec_num;

int offset = 0, counter = 0;

for (k = 0; !feof(data_file) &&
counter < max_rec_num; k++)

fgets(names_index[k] .key, NAME_LEN, data_file);
offset += sizeof(VITALSTAT);
if (fseek(data_file, offset, SEEK SET) &&

(!feof(data file)))
exit (1);

counter++;

return counter;

Note that the offset value is computed by taking the size of the VITALSTAT
structure. By using the sizeof operator, we make the function more portable,
since the size of shorts may vary from one machine to another. In addition, the
structure may contain gaps due to alignment restrictions.

The next task is to sort the array of NAMES JNDEX structures. This function,
which makes use of the library function qsort(), is shown on the following page.
The return value is a pointer to an ordered array of NAMES JNDEX structures.

www.manaraa.com

366 Chapter 11

/* Sort an array of NAMES INDEX structures by the

*
*
*

name field. There are index count elements to
be sorted. Returns a pointer to the sorted
array.

*/

#include <stdlib.h> /* Header file for qsort() */
#include "recs.h"

void sort_index(names_index, index_count)
INDEX names index[];
int index count;

int j;
static int compare func(); /* Defined in this

* file.
*/

/* Assign values to the index field of each
* structure.
*/

for (j = 0; j < index_count; j++)
names index[j] . index = j;

qsort(names_index, index_count,
sizeof(INDEX) , compare_func);

return names index;

static int compare_func(p, q)
NAMES INDEX *p, *q;

return strcmp(p->name, q->name);

The next step is to print out the records in their sorted order. We definitely need
to use Jseek() for this function because we need to jump around the file. We can
compute the starting point of each record by multiplying the index value with the
size of the VITALSTAT structure. If each VITALSTAT structure is 40 characters
long, for example, record 50 will start at character 2000. After positioning the
file position indicator with Jseek(), we use Jread() to read each record. Finally,
we print each record with a printf() call.

www.manaraa.com

Input and Output

/* Print the records in a file in the order
* indicated by the index array.
*/

#include recs.h

void print_indexed_records(data_file, index,
index count)

FILE *data_file;
INDEX index[];
int index_count;

VITALSTAT vs;
int j;

for (j = 0; j <= index_count; j++)

if (fseek(data_file,
sizeof(VITALSTAT) * index[j] .index,
SEEK_SET }}

exit (1);

367

fread(&vs, 1, sizeof(VITALSTAT}, data_file };
printf("%20s, %hd, %hd, %hd, %12s", vs.name,

vs.bdate.day, vs.bdate.month,
vs.bdate.year, vS.ssnum };

To make this program complete, we need a main() function that calls these other
functions. We have written main() so the filename can be passed as an argument.

www.manaraa.com

368 Chapter 11

#include "recs.h"

main (argc, argv
int argc;
char *argv[];

extern int get records();
extern void sort index();
extern int print indexed_records();

FILE *data file;
static INDEX index[MAX_REC NUM];

int num recs read;

if (argc ! = 2)
{

printf("Error: must enter filename\n");
printf("Filename: ");
scanf("%s", filename);

else
filename = argv[l];

if ((data file = fopen(filename, "r")) == NULL)
{

printf("Error opening file %s.\n", filename);
exit (1);

num recs read = get index (data_file, index,
MAX_REC_NUM);

sort_index (index, num_recs read);
print indexed_records (data file, index,

num recs read);
exit (0);

www.manaraa.com

Input and Output

getehar()

gets()

printf()

putehar()

puts()

seanf()

fclose()

fflush()

fgete()

fgets()

Reads the next character from the standard in
put stream. getehar() is identical to gete(stdin).

Reads characters from stdin until a newline or
end-of-file is encountered.

Outputs one or more values according to
user-defined formatting rules.

Outputs a single character to the standard out
put stream. putehar() IS identical to
pute(stdout}.

Outputs a string of characters to stdout, ap
pending a newline character to the end of the
string.

Reads one or more values from stdin, interpret
ing each according to user-defined formatting
rules.

Table 11-3. I/O to stdin and stdout.

Closes a stream.

Flushes a buffer by writing out everything cur
rently in the buffer. The stream remains open.

Same as gete(), but it is implemented as a func
tion rather than a macro.

Reads a string from a specified input stream.
Unlike gets(), fgets() enables you to specify a
maximum number of characters to read.

Table 11-4. I/O to files (continued on next page)

369

www.manaraa.com

370

fopenO

fprintf()

fputc()

fputs()

fread()

freopen()

fscanf()

fseekO

ftell()

fwrite()

getcO

putc()

ungetcO

Chapter 11

Opens and possibly creates a file and associ
ates a stream with it. fopen() takes two argu
ments: a character string identifying the file
and a mode specification that determines what
types of operations may be performed on the
file.

Exactly like printf(), except that output is to a
specified file.

Writes a character to a stream. This is the same
as putc(), but it is implemented as a function
rather than a macro.

Writes a string to a stream. This is like puts(),
except that it does not append a newline to the
stream.

Reads a block of binary data from a stream.
The arguments specify the size of the block and
where it should be stored.

Closes a stream and then reopens it for a new
file. This is useful for recycling a stream, par
ticularly stdin, stdout, and stderr.

Same as scan/{), except that data is read from a
specified file.

Positions a file position indicator, enabling you
to perform random access on a file.

Returns the position of a file position indicator.

Writes a block of data from a buffer to a
stream.

Reads a character from a stream.

Writes a character to a specified stream.

Pushes a character onto a stream. The next call
to getc() returns this character.

Table 11-4. 110 to files. (continued from preceding page)

www.manaraa.com

Input and Output

clearerr()

feofO

ferrorO

remover)

rename()

tmpfile()

tmpnam()

Resets the error and end-of-file indicators for
the specified stream.

Checks whether an end-of-file was encountered
during a previous read operation.

Returns an integer error code (the value of err
no) if an error occurred while reading from or
writing to a stream.

Table 11-5. Error-Handling Functions.

Deletes a file.

Renames a file.

Creates a temporary binary file.

Generates a string that can be used as the name
of a temporary file.

Table 11-6. File Management Functions.

371

www.manaraa.com

372 Chapter 11

Exercises

1. Write a program that implements the #include preprocessor command.

2. Write a function called compress() that removes all extraneous white
space from a C source flIe. (Warning: don't remove white space from
character and string constants.)

3. Write a program to check for proper pairing of braces and parentheses
in a C source flIe.

4. Write a program that counts the number of characters, words, and lines
in a flIe.

5. Write a program that copies all flIes on the command line (see argv) to
stdout.

6. Write a program that enables you to enter data into a flIe containing
VITALSTAT structures.

7. Write a program that reads characters from standard input and copies
them to standard output, translating each '\r' '\n' sequence into '\n'.

8. Write a program similar to Exercise 7 except that it takes two command
line options:

-from srcstr
-to deststr

Each occurrence of srcstr on input is converted to deststr on output.

9. Write a program that opens a file specified on the command line and
prints it out backward.

10. Write a program to read any flIe specified on the command line (even a
binary flIe) and print out only those sequences of two or more printable
characters ('a'-'z', 'A'-'Z', '_', '0'-'9').

Use your executable program as input. Explain what comes out.

www.manaraa.com

Chapter 12

Software Engineering

"For 'tis the sport to have the engineer
Hoist with his own petar." - Shakespeare, Hamlet

Though the cost of computer hardware-the silicon chips containing the thou
sands of transistors that fonn the instruction set and memories-has shown a
consistent trend downward in cost over the years, the cost of software has not
followed suit. The high cost of software is due largely (and paradoxically) to the
ease and flexibility with which it can be shaped. The ease with which software
can be created and changed can also lead to unworkably complex systems.

Unlike the physical limitations imposed on hardware (such as the number of
gates you can fit on a chip, the speed of electrons in the medium, and the amount
of heat that can be dissipated), software is limited mainly by the imagination of
the software engineer. While flexibility is an important aspect of software,
unrestrained use of this flexibility is a siren song that all responsible software
engineers must resist.

As John Shore points out in his book The Sacher Tort Algorithm, the curse of
flexibility is both deceptive and seductive. Without the discipline of software
engineering, unsuspecting programmers soon find themselves deeply mired in
the tar pits of complexity. Using the techniques of software engineering, it takes
a little longer to be caught in those pits.

In this chapter we cover the basic elements of software engineering. One aspect
of software engineering that we have discussed throughout this book is good
programming style. Programming style consists of three important qualities:

www.manaraa.com

374

Readability

Portability

Maintainability

Chapter 12

Write the source code so that it is readable to you and
others. This includes aesthetic fonnatting, meaning
ful variable names, and consistency within and across
source files.

Write the code so that it is easy to port to other
machines. If possible, avoid nonstandard features,
and use the standard library runtime routines rather
than writing your own.

As you write the code, think about how you might
want to change or extend it in the future. Put data
structure definitions in header files where changes
will be automatically broadcast to all source files that
include the header file. Use #define to create con
stant names for parameters that appear more than
once.

Table 12-1 summarizes some of the stylistic issues that we addressed earlier.
Though style is important, there are other aspects of software engineering that
are every bit as critical. These include:

• Product Specification

• Software Design

• Project Planning and Cost Estimation

• Software Tools for Software Production

• Debugging Techniques

• Testing

• Perfonnance Analysis

• Documentation

• Source Control and Organization

To illustrate these principles, we are going to show the steps we perfonned to
develop an interpreter for the C language. Unlike compilers, interpreters enable
you to execute source code immediately after you write it, without going through
the compilation and linking stages. On the downside, however, interpreted
programs usually take longer to execute than compiled programs. For this
reason, interpreters are often used in the development stage, where execution

www.manaraa.com

Software Engineering 375

speed is less important than compilation time. When the program has been
written and debugged, it is compiled to produce efficient executable code.
Interpreters are also useful learning tools because of their interactive nature.

The interpreter we develop in this chapter is only a subset of a complete C
interpreter. The techniques we use in its development illustrate principles that
hold true for all large projects. See Appendix F for the complete listings of all
modules described in this chapter.

Poor Programming Style Good Programming Style

Putting extern declarations Putting extern declarations in .c
source files. in .h header files.

Sharing data among Sharing data by passing
functions by making the arguments.
data global.

Giving data global scope Using static to give data
when file scope would and functions file scope.
suffice.

Creating numerous Creating fewer, more
special-purpose functions. general primitives.

Using non-mnemonic Using names that connote
names. usage.

Using numeric constants. Using named constants.

Using goto. Using structured control
flow statements.

VVritingredundantcode Using functions for code
sequences. sequences that are used

repeatedly.

Table 12-1. Summary of Programming Style Issues.

www.manaraa.com

376 Chapter 12

12.1 Product Specification

To produce a quality software product, it is important that the product be well
understood before the work starts. To ensure that everyone involved has the
same idea about what the product is supposed to do, it is important to develop a
detailed specification that describes exactly how the product is expected to
behave. A product specification does not detail how the product is to be im
plemented (this is covered in a project plan). Instead, it describes how the final
product will appear to users.

A product specification is useful to both users and project members. Users can
tell early on whether the product will meet their needs. Project members will
know just what their software is supposed to do. It is the responsibility of the
product designers to make sure that no unreasonable expectations are set. Vague
language such as "fast response" or "easy to use" should be avoided. "Fast" may
mean ten minutes, a second, or less than a microsecond. How easy something is
to use can be just as relative.

The two cardinal rules for product specifications are consistency and simplicity.
To attain these goals, it is best if the specification is driven by one person.
Committees are good for review but poor for design. This well-known truism is
memorialized in the old joke that a camel is a horse designed by committee.

A specification of a software product can get complicated fast, so you should
always be alert to signs of needless complexity. One indication of unnecessary
complexity is the existence of several ways to perform the same operation. For
instance, some software products have two commands-"date" and "time"-that
perform the same operation. This may not create a programming problem, but it
makes the user interface messy. It is confusing to users, who naturally assume
that every command has a unique purpose.

Another sign of needless complexity is verbosity. This is especially true of
interactive software products. For example, suppose your program needs a way
to return the current date and set the date. Rather than create two commands to
perform these operations, it is better to have one command, "date," that returns
the date if there is no argument or sets the date if an argument is present:

$ date
1/29/87
$ date 1/30/87
$ date
1/30/87

www.manaraa.com

Software Engineering 377

Note that this is superior only for interactive products where readability is less
important than succinctness and typing ease. For batch programs (programs that
run without human interaction), readability is more important than succinctness.
For a batch program, therefore, it would be better to define two commands,
"getdate" and "setdate."

The ideal specification consists of a few primitive operations out of which all the
user requirements can be met.

You shouldn't spend too much time on the initial specification. Typically, a
specification receives feedback from the software design phase. As the product
gets built, system limitations usually force the designers to rewrite the specifica
tion. When the product reaches the state where it can be run, experimentation
usually results in changes to both the software design and the product specifica
tion.

Because of this feedback process, we advocate an evolutionary approach in
which an executable prototype is developed as soon as the basic features of the
specification and design are fairly firm. The prototype can then undergo en
hancements in parallel with the addition of new features in the design
specification. This method results in fewer surprises during the course of devel
opment because progress can be tracked by adding new levels of functionality.
Each level is called a milestone.

Sometimes it is not clear what the set of primitives should be, especially when
designing interactive programs. Parts of the product that drive the user interface,
such as the assignment of edit functions to keys on the keyboard, *ould be
designed with enough abstraction so that they can adapt to changes in the specifi
cation. There are even screen-design tools available that enable you to
experiment with different user interfaces. This can make the product ~pecifica
tion process much easier.

The product specification is usually the base document from which the final user
documentation is created. As such, it is important that this be kept accurate and
current.

www.manaraa.com

378 Chapter 12

A good outline for a specification is as follows:

1. Abstract of project.

2. Command line interface.

3. Input file syntax.

4. Screen design.

5. Output file fonnat descriptions.

6. Interactive command 11IDguage (if any).

7. Error messages.

8. Future extensions.

The specification for our C interpreter is shown below. This is a short specifica
tion. It benefits from pointing at specifications in other documents. Large
projects, without benefit of prior specifications, may require hundreds, or even
thousands, of pages to define product behavior.

1. Abstract

The intent of this project is to create an interpreter that supports a subset
of the C language. It will support

• C scalar data types.

• Most C expressions.

• Some control-flow constructs.

A typical session with the interpreter might look like the session shown
in Figure 12-1.

The goal is to write this interpreter in a way that illustrates the concepts
of software engineering that would be used in projects many times
larger than this one.

2. Command Line Interface

Unless a command line argument starts with the dash (-) character, it is
treated as a source file. This file will be read and preparsed before the
user receives a prompt. Any functions defined in the source files will
be available to the user.

www.manaraa.com

Software Engineering 379

If a command line argument is prefixed with a dash character, it is
parsed as an option flag to the interpreter. The valid option flags are:

-dlex

-dexp

-dstmt

Enables debugging information forthe lexical analyzer.

Enables debugging information for the expression pars
er.

Enables debugging information for the statement pars
er.

-run Runs the program as soon as it is read and exits when
finished.

3. Input File Syntax

The input file format is a subset of the C language as specified by the
ANSI Standard. The following subsections describe the supported sub
set.

3.1 Data Types

The interpreter supports the following scalar types: char, short,
int, long, float, double, void, and pointers. Arrays of the scalar
type are also supported.

The following are not supported: typedefs, structures, unions, and
enums.

3.2 Expressions

Precedence rules and conversion rules are as described by the
ANSI Standard.

3.2.1 Constants

Fixed and floating-point constants are allowed as specified by the
ANSI Standard. Double-quoted strings and single-quoted charac
ters are allowed.

Long and unsigned constants are not supported.

3.2.2 Variables

Variables of up to 31 characters are supported with standard C
naming conventions.

www.manaraa.com

380 Chapter 12

3.2.3 Operators

For the type double, the following C expression operators are
supported: sizeof, =, +, - (unary), - (binary), *, /, <, >, <= ,> =,
==, !=, !, function call, and array reference.

For the type int, the following C expression operators are sup
ported: sizeof, =, +, - (unary), - (binary), *, /, %, I, & (binary), A,

<, >, <=, >=, ==, !=, !, ++, -, », «, "', function call, and array
reference.

The following operators are not supported: ?:, casts, ->, &&, II,
and •.

3.3 Statements

The following statement constructs are supported: expressions,
for, while, if, break, return, and compound statements.

The following statement constructs are not supported: switch, con
tinue, goto, do ••• while, and statement labels.

3.4 Preprocessor Directives

No preprocessor directives are supported.

3.5 Library Functions

The following runtime library functions are available: print/(),
scan/(), exit(), sin(), cos(), tan(), sqrt(), pow(), exp(), malloc(),
jree(), date(), ctime(), strcpy(), strcmp(), strcat().

4. Output File Specification

None.

5. Interactive Command Language

The interpreter supports a command language, as described in the fol
lowing subsections.

5.1 Prompt

The prompt consists of the string "eint> ".

www.manaraa.com

Software Engineering 381

5.2 run Command

The run command starts execution of the procedure main().

5.3 list Command

The list command displays the entire entered program to standard
output.

5.4 Editing Capability

None.

5.5 Command Set

The complete C subset as described in Section 3 can be typed in
from the console after all command-line files have been read in.

Additionally, any expression that does not parse as a declaration, or
one of the extensions in Section 3.6, will be parsed as a C expres
sion.

6. Errors

The interpreter supports the following diagnostic error messages. Itali
cized words represent parameters that are replaced by variable names or
character strings.

1 Expected symbol token
2 Missing ']' in array declaration
3 Error in arg list. Wanted a symbol, not a string
4 Bad argument syntax
5 Can't have nested functions
6 Expected '{'
7 Missing 'C afterfunction name
8 Missing ')' in function call
9 Missing ']'
10 Noninteger operand to '!'
11 Noninteger operand to '-'
12 Bad operand to '++'
13 Bad operand to '-'
14 Unmatched parentheses
15 Unexpected token in expression: string
16 Bad operand to '++'
17 Badoperandto'-'
18 Bad subscript expression
19 Missing ']' in array subscript

www.manaraa.com

382

20
21
22
23
24
25
26
27
28
29
30
31
32
33

Illegal LHS to assign op
Unexpected token in expression: 'string'
End of file before end of comment
No main function
Missing semicolon
Missing '(' after if
Missing ')' after if
Missing '(' after while
Missing')' after while
Missing '(' after for
Missing ')' afterfor
Internal error in cint, premature token list end
Missing'} ,
Bad function name string

12.2 Software Design

Chapter 12

Once the product is specified, a plan of attack must be formulated. This involves
deciding on the various phases of processing and the major data structures.

First, you should consult the library. There is a wealth of literature about data
structures and algorithms for many different software disciplines. For instance,
compiler technology has evolved to the point where it is well understood [see
Aho & Ullman, Principles of Compiler Design]. Graphics software includes a
rich set of common algorithms and data structures [see Foley & Van Dam,
Fundamentals of Interactive Graphics]. Operating system design is well laid out
in A. Tannenbaum's Operating System Design. Algorithms for database systems
can be found in C. 1. Date's Database Design. Other software disciplines are
also documented to varying degrees. So to begin high level-d~sign of a software
product, you should first gain a good understanding of the problem and past
solutions.

A common design method that we have found effective is called stepwise refine
ment, which was first enunciated by Niklaus Wirth in his 1971 CACM paper,
Program Development by Stepwise Refinement. In this method, you carve up the
problem at a high level of abstraction and then address each subproblem,
dividing it into smaller, less abstract parts until each part can be easily imple
mented. The highest level of division is typically a program, though it may be a
set of programs; at the next level, the program consists of cohesive sets of
functions, called modules. A module consists of locally scoped (via the static
keyword) support routines and globally visible interface routines. You should
have one source file (which optionally includes header files) per module.

www.manaraa.com

Software Engineering 383

There are three basic phases to software design:

1. Identify major divisions of functionality (i.e., define what goes into
each module).

2. Identify the major data structures that are shared by modules identified
in Step 1.

3. Create an additional module for each data structure identified in Step 2.

Applying the first step in the design of our interpreter, we arrive at the modules
shown in Table 12-2.

Module Name Purpose

main.c Read the command line and provide the
starting point for the program.

lex.c "Tokenize" the input (i.e., divide the
input into meaningful C language tokens).

dec!.c Parse declarations.

expr.c Parse and evaluate expressions.

sym.c Manipulate symbols.

stmt.c Parse and execute statements.

Table 12-2. List of Modules in the C Interpreter.

The goal in dividing a program into modules is to find clearly demarcated and
cohesive sections that are not strongly interrelated with other sections. Once the
modules are set forth, the same divide and conquer method that we used for
determining modules can be used to decide upon the functions within a module.
For example, sym.c includes functions to

• Enter a symbol.

• Find a symbol.

• Get the type of a symbol.

• Set the type of a symbol.

www.manaraa.com

384 Chapter 12

• Get the value of a symbol.

• Set the value of a symbol.

The fewer intermodule dependencies that exist, the easier the program is to read
and maintain. Some of the modules we defined for our interpreter are similar to
the chapters we chose for the book. This is not surprising since the same goals
of clarity and cohesion guided our organization of this book.

In Steps 2 and 3 of the design process, we identified the major data structures
required by each module and created additional modules to manage access to
these structures:

token st.c

sym.c

memory.c

Manage the data structure for the tokenized input
stream.

Manage the symbol table.

Control access to program memory.

In addition to these modules, we created several header files that contain declara
tions and definitions used across modules.

Header Files

cint.h
sym.h
lex.h
token st.h

Used by all modules.
Defines values and data structures used by sym.
Defines values and data structures used by lex.
Defines values and data structures used by token_st.

12.2.1 Choosing Efficient Data Structures and
Algorithms

An important part of the design stage involves selecting appropriate data struc
tures and efficient algorithms for accessing the data structures. There a number
of factors to consider when designing data structures and algorithms. How fast
is the algorithm in processing typical data? How much memory will the struc
ture require? Will it be easy to change if we want to add new capabilities? In
this section, we give a taste of what's involved in resolving these issues by
discussing the symbol table in cint.

The symbol table is the data structure which holds information about each
variable that is declared in a program. We need to know the variable's name, its
data type, its storage class, and its location in memory. All of this information is
stored in a structure named SYM.

www.manaraa.com

Software Engineering 385

Given N number of symbols declared in a program, we need a way of organizing
the SYM structures so that they can be easily accessed. The most obvious
organization scheme is a linked list. Each time a new symbol is declared, we add
an element to the list. Unfortunately, searching through a linked list for a
particular element is relatively inefficient. In the best case, the element we want
will be the first element in the list. But in the worst case, it will be the last
element, which means we will have to look at N elements before we find the
right one. On average, the number of look-ups to find a particular element is
N12, which is not very good.

A better way to organize the symbol elements is in the form of a binary tree. In
Chapter 5, we introduced binary trees as a way to parse expressions, but binary
trees are also widely used to store symbol tables. In this method, each symbol
has two branches coming off it-a left branch and a right branch. The left points
to all symbols that are alphabetically before the node and right branch points to
all symbols that are alphabetically after the node.

Table 12-1 shows a binary tree for 15 symbols. In the case of a binary tree, the
maximum number of look-ups is the same as the number of levels in the tree. To
find x, for instance, we need to go through pf, sub _s, and vaT. Note that the
number of symbols on each level is 2 to the m power, where m is the level
number. If the number of symbols is N, therefore, the maximum number of
levels (and hence look-ups) is log2N. This is considerably better than N, which
is the maximum number of look-ups for the linked-list method.

Figure 12-1. Balanced Binary Tree Implementation of a Symbol
Table.

Note, however, that the number of levels is log2N only if the tree is balanced-
that is, if each node has the same number of nodes below it on the left as on the
right. If the tree is unbalanced, as in Figure 12-2, the maximum number of
look-ups approaches N again. In fact, a tree that is completely unbalanced is
identical to a simple linked list. It is a difficult task to keep a tree balanced as

www.manaraa.com

386 Chapter 12

you add symbols to it. (We leave it as an exercise to the reader to design an
algorithm that turns an unbalanced tree into a balanced tree.)

Figure 12-2. Unbalanced Binary Tree Implementation of a Symbol
Table.

Because it is hard keep a binary tree balanced, it is often better to use an
alternative method called a hash table. A hash table is an array of pointers, each
of which typically points to the beginning of a linked list. Each symbol is
assigned to one of the linked lists. To determine which linked list a symbol is
assigned to, you need to convert the symbol name into an integer that serves as
the subscript to the array. For example, the symbol name var might be converted
to the integer value 5, which would then be used as the subscript for the array of
pointers. var would be stored somewhere in the linked list pointed to by element
5 of the array.

Ideally, each linked list should be short so that once the array subscript is
determined, the number of look-ups is minimal. In a very sparse hash table, for
example, each linked list contains only one or two elements, so the maximum
number of look-ups is two. Note, however, that you must allocate space for the
entire array at the start of the program. It is sometimes impractical, therefore, to

www.manaraa.com

Software Engineering 387

create an array large enough to ensure that the hash table will always be sparse.
Also, it is important to convert the symbol names into integers in such a way that
the resulting integer values are spread evenly across the range of subscript
values. The following function is a good hash function that returns a number
between 0 and HASHSlZE based on the values of all the characters in the symbol
name. Experience has shown that this function produces a uniform distribution.

#define HASHSIZE 211 /* The size of the table

int hash_function(p)
char *p;

int hash_val = 0;

for (; *p; p++)

* should be a prime number.
*/

hash val = hash val * 65599 + *p;
hash val %= HASHSIZE
return hash_val;

Assuming that symbols are evenly distributed throughout the hash table, the
maximum number oflook-ups is simply Nih, where h is the size of the table. For
example, if there are 400 symbols and 200 linked lists, each linked list will
contain two entries, so the maximum number of look-ups will be two. In
practice, the symbols are never distributed this evenly, but the number of
look-ups is still likely to be smaller than in a binary tree model. Note, however,
that there is a random element to hash tables that makes it impossible to predict
in a deterministic way exactly how efficient it will be. It takes some trial-and
error testing to arrive at the ideal size for the table and the best algorithm for
producing a uniform distribution of symbols.

This discussion barely touches the surface of searching algorithms, but it does
show that you need to devote considerable thought and research to choosing
efficient algorithms at the design stage. For more information about this subject,
we recommend the third volume ("Searching and Sorting Algorithms") of The
Art of Computer Programming, by Donald E. Knuth. Another good book on this
subject is Design and Analysis of Computer Algorithms by Aho, Hopcroft, and
Ullman.

Regardless of what algorithm you select, you should implement the data struc
ture so that it can be easily modified for different algorithms. In our version of
cint, for example, we use a simple and inefficient linked-list organization for the
symbol table. But the symbol table is a well-abstracted module in that it hides its
implementation from the other parts of the product. Given this abstract interface,

www.manaraa.com

388 Chapter 12

it is relatively easy to modify the program to use a more efficient searching
algorithm. We pose this enhancement as an exercise for the reader.

12.2.2 Information Hiding
To control software complexity, it is often useful to limit the amount of informa
tion that each module can "see." Each module "owns" certain data objects on
which it operates. The ability to operate on an object implies an understanding
of the object's internal structure. A module should give other modules enough
information to properly declare common objects, but not so much information
that the other modules can also operate on the objects. Developing mechanisms
to isolate objects from external modules is a software engineering technique
known as information hiding. Information hiding makes it easier to modify a
data structure because only one module is dependent on the internal organization
of the object.

There are a number of ways to implement information hiding. We have bor
rowed a notion called private types from the Ada programming language.
Private types expose enough information about data structures so that other
modules can declare them properly for type-checking purposes but cannot ac
cess the data structures.

In C, we implement private types by conditionally compiling two declarations of
the symbol data structure in sym.h. The detailed declaration is compiled for the
sym.c module, while a deliberately vague declaration is compiled for other
modules. The detailed declaration is compiled only if the macro SYM _OWNER
is defined to expand to a nonzero value (it is defined in sym.c, but not in the
other modules):

char *sym_name;
VALUE sym_value;

} ;

#if SYM OWNER
typedef struct _private_type sym SYM;

#else
typedef struct

char _x[sizeof struct _private sym];
} SYM;

#endif

If SYM _OWNER is defined, SYM is declared as a structure with two members,
sym_name and sym_value. If SYM_OWNER is not defined, SYM is declared as a
structure with an array of char. In either case, the size of SYM is the same, so

www.manaraa.com

Software Engineering 389

there won't be conflicts. External modules, however, will not be able to access
the module through the member names.

12.3 Project Management and Cost
Estimation

Like any construction endeavor, creation of software requires management of the
necessary people and resources. Management will be effective only if there is, at
the outset, a good understanding of the costs in terms of people, time, and
computing power. In this section, we discuss techniques for estimating these
costs and providing effective management.

A seminal work on the software engineering process is The Mythical Man-Month
by Dr. Fredrick P. Brooks. Dr. Brooks describes the pitfalls and obstacles he
experienced in the development of mM's OS/360, a large operating system that
runs on mM's 360 series of mainframes. Despite the fact that it was written 15
years ago, and despite the many advances made in software production since that
time, many of Brooks' observations are still valid today.

Unlike other engineering disciplines, software is pure abstraction. As Dr. Brooks
points out, a programmer "builds his castles in the air, from air, creating by
exertion of the imagination." The civil engineer at least knows the distance his
bridge has to span. From that he has a rough estimate of the bricks or steel
beams required to make his bridge. With software there are no physical parame
ters to measure against. The only guides are previous attempts at solving similar
problems.

Brooks recommends that you plan to throwaway the first attempt, since it's
likely to be worthless. Fortunately, there is more literature available today on
various software efforts than there was in 1972 when Brooks wrote of his
experiences, so the first attempt is often salvageable. Still, there is no substitute
for having done it before.

www.manaraa.com

390 Chapter 12

Brooks, based on his experience as ffiM's O/S 360 project manager, claims that
most software product schedules can be broken down as follows:

1/3 product specification and scheduling personnel

1/6 coding

1/4 component testing and early system testing

1/4 complete system integration and testing

Our experience in the production of compilers, editors, and debuggers supports
this contention. If the schedule does not allow for 50% debugging and testing
time, you will be faced with the choice of shipping a poor-quality product or
delaying shipment in order to properly test and debug the system.

When scheduling the development of a large product, you need to have a good
understanding of all the major parts of the product. One of the arts in explaining
difficult concepts is in finding the right way to split the concept into smaller,
more easily digested parts. It is exactly this partitioning that a project manager
must perform. Ideally, the parts should be well-defined tasks, with little need for
communication with the rest of the product. Additionally, each task should
require no more than one person. When people have to spend time disputing
large, ill-defined interfaces between sections, a lot of time and energy is wasted.
If the parts are not well selected and time has to be spent later in the project to
repartition and hire and train more personnel, the project is likely to run way past
its target date.

The phenomenon of losing time due to the overhead of training more people and
choosing bad partitions gives rise to Brooks' law:

Adding more people to a late software project makes it later.

Partitioning allows each engineer to concentrate on his or her particular section
of the product. It is important to keep the amount of interaction between one
partition and other partitions to a minimum so that development of different
partitions can occur simultaneously. This is the notion of modularity. While
modularity may result in redundant code across modules, it allows everyone to
get on with their end of the effort without wasting time in endless design
meetings.

Tracking a project's progress can be a bit tricky. Initial progress is generally
quite fast. As complexity builds, however, progress slows down. Our experi
ence has shown that most products follow the development curve shown in
Figure 12-3. In fact, as the curve suggests, by the time 90% of the functionality
is in place, you are still only halfway to a shippable product.

www.manaraa.com

Software Engineering 391

Functionality

100%
90% ----------~~-~--~-~--~--~-~--~-~--

50%

Time 50% 100%
Figure 12-3. Typical Software Development Curve.

12.3.1 Project Planning
For scheduling purposes a project plan should be created that explains how the
project is to be fulfilled. The project plan breaks down the task into manageable
subtasks and gives time estimates for each subtask. Dependencies and mile
stones are mentioned as well. The granularity of such a schedule is usually a
staff-week. There are various software products available to help with just this
sort of scheduling.

A common pitfall of software design is known as the NIH (Not Invented Here)
syndrome. This refers to a tendency among some engineers to feel that if a
product or subsystem was not invented by members of the design team, it can't
be any good. There are many high-quality software companies that will sell
sources for all kinds of software products. A part of a responsible software
design plan should include the option of buying part or all of the system from
another source.

A good outline for a project plan is as follows:

1. Abstract

2. Itemization of subtasks and time estimates

3. Time lines and milestones (pert chart)

4. Resource requirements (people, computers, disk storage, special hard
ware)

www.manaraa.com

392 Chapter 12

5. Other projects this project depends on

6. Other projects that depend on this project working

As an illustration, the following shows our project plan for the C interpreter.

1. Abstract

This document details a plan for implementing the product specification
for the "Cint" C subset interpreter.

2. Itemization of subtasks and time estimates

The following modules need to be written:

Module

memory manager
lexical analyzer
symbol table handler
main (reads command line and
handles file open/close)
expression handler
token stream manager
declaration parser
statement parser
debug & test

total time

3. Time lines and milestones (pert chart)

Time Estimate

0.5 weeks
2.0 weeks
2.0 weeks

1.0 weeks
4.0 weeks
2.0 weeks
1.0 weeks
1.0 weeks
13.0 weeks

26.5 weeks

The overlap of some of the modules in Figure 12-4 indicates that some
modules can be developed simultaneously. The overall time for project
completion, therefore, can be decreased by adding staff. It is clear from
the figure that an additional programmer would cut our development
time in half.

www.manaraa.com

Software Engineering 393

4. Resources required

Machine: Any system that supports a C compiler and make utility (for
example, any UNIX system or MSIDOS system)
Software: A C compiler and make utility.
Programmers: 1
Disk storage: 10 megabytes of hard-disk storage

5. Other projects this project depends on

None.

6. Other projects that depend on this project

Publication of this book Software Engineering in C depends on the
successful completion of this project.

test creation

~
I expr

~

o 3

sym

6

stmt

declare

assign to
a variable

9 12

testing

run:
mainO

{ printf("hello word\n");
}

pass
test
suite

15 18 21 24 27 30

Figure 12-4. Time Lines and Milestones for the cint Project. The
lines coming up from the horizontal time line indicate
major milestones.

www.manaraa.com

394 Chapter 12

12.3.2 Source Management

For a large software product with many subsystems and modules and more than
one programmer, it is important to organize the source files so that people don't
get in each other's way. A good organization scheme is to create a directory for
each subsystem and a directory for subsystem include files. For instance, if our
interpreter included an editor and debugger as subsystems, its source-file directo
ry structure would look like Figure 12-5.

Figure 12-5. Directory Structure for C Interpreter Project Containing
Debug and Edit Subsystems.

During development of the product, a version of the source tree is stored in a
publicly accessible place. To work on particular files, an individual makes
copies of the files, edits the private copies, and generates a private copy of the
product using the public object files combined with the newly modified private
object files. After testing the private version to make sure that the changes are
correct, the modified source files are copied back into the public source tree,
replacing the older files.

A source-control system can be extremely useful in managing the source tree. A
source-control utility maintains a log of changes to a source file and a status of
the file. For example, it keeps track of whether the file is logged out for editing
and who logged it out. That way, two people can't accidentally edit the same file
at the same time and enter incompatible changes. The change history is useful
for removing ill-conceived features or discovering what change has caused the
latest bug. Under UNIX, sees is a popular source-control utility.

It is common for bugs to be introduced into a product by programmers who
change one part of the program without realizing how the change will affect
other parts of the product. For this reason, it is important that you record
changes to source files. When new bugs crop up, the first place to look is in
recently changed files.

www.manaraa.com

Software Engineering 395

12.4 Software Tools for Software
Production

A C compiler, as we have discussed in the prior 11 chapters, is a software tool
for software production, as are editors and debuggers. A full C interpreter is also
a valuable software tool for debugging because it shortens the compile-edit-de
bug cycle. There are a number of other tools that are helpful for efficient
software production. In fact, there is an entire industry, called Computer-Aided
Software Engineering (CASE), that develops utilities to facilitate software pro
duction. The UNIX operating system includes the following utilities:

flow

grep

lint

prof

Analyzes the function call tree.

Finds every occurrence of a name in a set of files and
prints out the file name and line containing the match.

Examines C source files to detect potential bugs and
nonportable constructs.

Pinpoints CPU-expensive parts of a program.

Most computer systems sold today also have source-code control and automatic
product-build software tools available. These tools are indispensable for build
ing large software systems. A well-known source code control system under the
UNIX system is sees. An even more famous UNIX software build utility is
known as make. A good book on using and building software tools is Software
Tools by Kernighan and Plauger.

12.4.1 Automatic Product Building

The idea behind automatic product building is that a single file describes how the
parts of a product combine to make the final set of programs. For example, it
lists the object files that need to be built, lists the header files that each object file
depends on, and describes how the object files are to be linked together to create
an executable image. More important, the build file lists dependencies for each
object file. When any file is out of date with respect to the final product, only
the parts of the product that need to be rebuilt are processed.

The instructions for building a product are stored in a file called a build file. The
build file serves two purposes: first, it specifies the minimum amount of work
required to build a product; and second, it acts as a design document, detailing
the dependencies and build rules for a product.

www.manaraa.com

396 Chapter 12

An automatic build utility also helps prevent version skew, a problem that occurs
when an object file compiled with obsolete header files is linked with more
current modules.

The UNIX make utility gets its instructions for building programs from a build
file named makefile. The makefile for cint follows:

makefile for cint - a subset C interpreter
OBJECTS = expr.o lex.o sym.o main.o token st.o \

stmt.o declare.o memory.o
CFLAGS = -DDEBUG=l
cint: $ (OBJECTS)

cc -0 cint $(OBJECTS)
$ (OBJECTS) : cint.h lex.h sym.h token st.h
end of makefile

The first line is a comment describing the makefile (the pound sign (#) signifies
a comment). The second line is a macro definition that associates the name
OBJECTS with the names of the files to the right of the equal sign. In this case,
the files are the objects required to build cint. The fourth line is another macro
definition. CFLAGS holds the command line flags that are to be used when the
make utility produces a C compile command line. In this case, the -DDE
BUG=1 option tells the C compiler to compile as if the line

#define DEBUG 1

were inserted as the first line of the program.

The lines with colons in them are called dependency lines. The filenames on the
left-hand side of the colon depend on the filenames on the right-hand side. For
example, the line

cint: $ (OBJECTS)

means that the executable file cint depends on all of the object files. The
notation

$ (OBJECTS)

expands the macro OBJECTS. If the line following a dependency starts with a
tab, it is treated as a command to be issued by make wbenever any of the objects
on the right-hand side of a dependency line are newer than the object on the
left-hand side. The command line in our example is

CC -0 cint $ (OBJECTS)

www.manaraa.com

Software Engineering 397

If there is no command line present, make uses default rules for issuing com
mands that create files of one suffix type from files of another suffix type. For
instance, when make detects that a .c file is newer than a .0 file, it invokes its
default rule for building .0 files from .c files;

cc -c changed-file.c

which creates changed-file.o.

To see how make works, assume you just edited sym.c to fix a bug. When you
type "make," make reads makefile and notices that cint is dependent on a number
of files, including sym.o. Because sym.o does not occur on the left-hand side of a
';' in the makefile" make uses its built-in default dependency rules to determine
that sym.o must be dependent on sym.c. When it checks the file modified dates,
make discovers that sym.c is newer than sym.o. Make then uses its default build
rule for turning .c files into .0 files and issues the command

cc -c -DDEBUG sym.c

Now make determines that cint is older than sym.o, and since, from the makefile,
cint depends on sym.o, it issues the command given in the makefile to build cint:

cc -0 cint expr.o lex.o sym.o main.o token st.o\
stmt.o declare.o

which creates cint out of the latest versions of all the objects.

12.5 Debugging

Not even the best, most experienced programmers write bug-free code on their
first try. A large part of programming, therefore, consists of finding and fixing
bugs. The original computer "bug" was a moth caught in the electromechanical
switches of the Mark II computer and discovered there by Lieutenant Grace
Hopper in 1945. The term bug has come to mean any erroneous behavior of a
computer system. Nowadays though, most bugs are caused by problems in
software, not hardware. The process of finding and fixing bugs is known as
debugging.

Once the development phase of a project is under way, the edit-compile-debug
cycle becomes the norm. Most products, if they become successful, eventually
fall into a maintenance mode, where they spend most of their useful life.

www.manaraa.com

398 Chapter 12

There are three laws of debugging:

1. All complex software has bugs.

2. The bug is probably caused by the last thing you touched.

3. If the bug isn't where you are looking, it's somewhere else.

The fIrst law reflects the insidious nature of algorithms to grow exponentially
more complex as they gain added functionality. The second law reflects the
opposing natures of computers and human beings-computers require painful
attention to detail; humans are prone to err. The third law is inspired by the
human tendency to stick to fIrst impressions. For instance, you may be con
vinced that your bug is caused by the second law, but after an exhaustive search
you still can't fInd it. Obviously, you need to look elsewhere. Although this is
obvious to the dispassionate reader, it is often not so clear to the frustrated
programmer.

Debugging is an art that requires patience and ingenuity, but most of all, experi
ence. The fIrst step in fixing a bug is to isolate the erroneous behavior.
Frequently, news of a bug comes from a user in the form: "It doesn't work."
This general comment needs to be pinpointed to something like: "After I type
run, it prints the fIrst variable and then hangs."

The important point is that you, the programmer doing the debugging, must be
able to reproduce the bug at your console. If at all practical, this means using
exactly the same input as the person who reported the bug.

When it isn't obvious from examination of the user input why a product fails,
you should rely on internal product debug information. This is usually available
through a command line option that is not divulged to the general public. Our C
interpreter, for example, contains three such debug options. If the answer still
eludes you, an interactive debugger is the answer.

12.5.1 Software Maintenance and Entropy
Maintenance of physical objects, like bridges and cars, refers to periodic replace
ment of worn-out parts. This tendency of mechanisms to wear out and work less
well over time is an example of a general principle known as entropy. Entropy
embodies the second law of thermodynamics, which can be paraphrased: all
systems tend to become less ordered over time.

Though software does not "wear out" like physical objects, it is equally suscepti
ble to the effects of entropy. Software products often suffer the effects of fast
employee turnover or rapid expansion. As new engineers join a project, they
need to become familiar with the product before they can make substantial
contributions. It is not unusual for bugs to be created by engineers who have

www.manaraa.com

Software Engineering 399

only a partial understanding of the product. Obviously, this problem can be
mitigated by readable code and good documentation.

Another entropic phenomenon that affects software is the tendency to add too
many bells and whistles to a product. As a software product becomes more
popular, its user community grows, and so also grows the number of suggestions
for new features. There is a great temptation to add as many of these features as
possible, but you need to consider how the new features will affect the overall
program. Adding new features usually means that the program will run slower
and will require more system resources. In addition, new features can make a
product more difficult to leam, use, and maintain. You should carefully consider
these potential drawbacks before adding new features to a stable product.

Bugs aside, the completeness or orderedness of a software product can only be
measured relative to the environment in which it operates. That is, does it run on
the right hardware, does it have sufficient speed and power, is it easy to use, is it
cost-competitive? By itself, a software product might be bug free, and if it were
not touched it could remain bug free till doomsday. But the environment in
which it operates is constantly changing, and the product must change with it.
Maintenance of software products, therefore, is a constant struggle to keep up
with an ever-changing industry.

12.5.2 Debuggers

Debugging tools are available at various levels, from assembler to high-level
source language. Most compilers sold today come with a full debugging system.
Source-level debuggers are the easiest to use. They allow you to put breakpoints
on ,source lines and set and examine local and global variables when program
execution reaches a breakpoint. Some allow you to step through a program one
source line at a time, examining variable values as you go. However, this mode
of attack is often too slow to be truly useful. The art of debugging is knowing
what is useful information and what isn't.

www.manaraa.com

400 Chapter 12

12.6 Testing
A product is only as good as its test system. In fact, the process of testing and
validating software systems is a discipline in its own right. Throughout develop
ment, testing is done to ensure that each module performs as expected. The tests
themselves may consist of ANSI-sanctioned validation suites, customer bench
marks, commercial test suites, tests developed by the development team, and a
set of tests that probe for the existence of prior bugs that are claimed to have
been fixed. Commercially available suites consist of input data and a conve
nient control and analysis system that automates the test and summarizes results.
Such test systems may take days to complete.

There are two major test phases of the complete product before it is ready to ship
to users: alpha test and beta test.

The alpha test consists of testing performed by the development team and others
within the organization for the express purpose of turning up any bugs in the
final product. Once a product has entered alpha test, the code for that version of
the product should be frozen. The only changes to the software should be bug
fixes. Source-code control systems are a big help in maintaining version integri
ty.

The beta test refers to a phase of testing that allows select customers to try out
the new product before it is made available to the general public. These custom
ers should be people who understand that in return for newer and better products,
they are accepting a bit of risk that the product still contains significant bugs.
The beta-test phase begins when the alpha test is complete, or far enough along
to guarantee a large measure of reliability.

The point of a beta test is to make sure that the product will function properly in
"real life." For instance, most test systems only test that the system behaves
properly when fed correct input. Proper diagnosis and treatment of erroneous
input can be essential to a usable product.

12.6.1 Test Engineering
Most software engineering organizations have a group dedicated to testing that is
responsible for final acceptance of products. This group creates, maintains, and
runs test suites and has the power to delay shipping a product if it decides the
product is not dependable.

Test engineering is a challenging part of software engineering. It is not enough
to write tests that cover every aspect of a product. The tests must be sophisti
cated enough to pinpoint problem areas when a failure occurs. Though the tests
themselves are not shipped with a product, the quality of the test system is
directly reflected in the quality of the final product.

www.manaraa.com

Software Engineering 401

12.7 Performance Analysis
Since the main thrust of a development effort is toward modularity and correct
ness, it is possible that execution speed may suffer. To some degree, this is to be
expected, although even in the design stages you should be careful to choose
efficient high-level algorithms. No amount of trickery can compensate for an
algorithm that is fundamentally slow. However, it is much easier to pinpoint
bottlenecks (places where the program spends much of its time) after the pro
gram is working than to predict in advance where the bottlenecks will lie. It is
unwise, therefore, to devote much of the initial design to low-level efficiency.

A common feature of C compilers is an option known as profiling. This refers to
the ability to count each function call made and keep track of the amount of time
spent in each function. The program is compiled with the profiling option and
run with some typical input. The profiler then generates a data file that contains
the call frequency and duration. A profile display program reads the data file
and prints out a formatted analysis. This analysis shows immediately the func
tions in which the program spends most of its time. This allows you to focus
your tuning efforts on the trouble spots.

Some systems support a more fine-grained analysis that works across arbitrary
code segments. This allows you to pinpoint CPU-hungry lines within functions.

Common bottlenecks ih programs that use heap storage are mal/ac() andfree().
If extensive use is made of mallac() andji·ee(), the internal list of free blocks can
contain large amounts of fragmented sized data. Most programs use only a
handful of different-sized data types. It is often possible, therefore, to gain a
significant increase in speed by writing a program that keeps its own free list
array, with a list for each commonly used type.

12.8 Documentation
Up to now, we have focused on internal documentation. Equally important to
the success of the project, however, is the documentation that goes to the end
user. Typically, end-user documentation is written by one or more professional
technical writers. A good technical writer combines a rare talent for clear
writing with a grasp of computer technology and is indispensable in any software
endeavor.

The technical writer should become involved in the project at an early date and
may actually help write the product and design specifications. It is in the interest
of both the technical writer and the developers to produce specifications that are
well written and accurate. The technical writer uses them as base documents
from which to write more polished end-user documentation.

www.manaraa.com

402 Chapter 12

If the technical writer cannot find the answer to a question in one the specifica
tions, he or she has two options:

1. Test the product itself, if it's available.

2. Ask the developers for the infonnation.

Both approaches have advantages and disadvantages. The advantage of the first
approach is that the writer actually tests the product. This testing may tum up
unexpected behavior unknown to the developers, including bugs. Moreover, it
ensures that the writer will be familiar with the product and will document
exactly what the user will see. The disadvantage of this approach is that it is
time-consuming. Also, a reliable version of the product may not be available
until it's too late.

The main advantage of the second approach is that it is fast. Also, by asking the
developer for infonnation, the writer implies that the infonnation is not available
in the specs. This may be an oversight that the developers should address. There
are two disadvantages to this approach. First, the developer may give the
technical writer erroneous infonnation. Second, time taken to answer questions
is time not spent programming. Usually, these disadvantages go hand in hand
since a busy programmer may give offhand and incorrect answers just to mollify
an inquisitive tech writer.

One documentation technique that we have found effective is for the technical
writer to write a rough draft of the manual(s), inserting notes and question marks
where there is confusion. The developers can then review this draft at their
leisure rather than being periodically interrupted with isolated questions. The
more draft versions a document undergoes, the better the final version will be.

An alternative strategy is for the programmer to write the initial draft and have
the tech writer edit it. Our own experience has proven that this technique is
effective only if the programmer is a talented writer and is motivated to write a
high-quality initial draft.

To produce quality documentation, a tech writer should make use of all the
resources available-specifications, versions of the product itself, and develop
ers. For their part, the developers must understand that the quality of the
documentation will affect the ultimate success or failure of the product. Tech
writers cannot perfonn their jobs without the developers' cooperation.

www.manaraa.com

Software· Engineering 403

Exercises
1. Find five bugs in the sample C interpreter, cint (listed in Appendix F),

and fix them. Be sure to include test programs that detect the presence
of the bug.

2. Add the "op=" operators to exp.c in cint.

3. Write a specification and project plan for one of the following projects:

a) Add preprocessor directives to lex.c in cint.

b) Give the list command an optional file name so that the listing can
be sent to the file.

c) Add unsigned data types.

d) Add switch statements and the ?: operator to cint.

e) Add casts to cint.

f) Add structures and unions to cint.

g) Write a screen-oriented editor front-end to cint, so that you can edit
the token stream directly.

h) Create a breakpoint facility that allows you to stop at any source
line and examine and set the values of local and global variables.

4. Profile cint or some other program to which you have the source,
identify the bottlenecks, and suggest ways of speeding up the program.

5. Write a specification for and develop a library of graphics calls that can
draw lines, squares, triangles, and circles of arbitrary size. Be sure to
use a consistent naming convention and argument placement. Use the
library to make a pretty picture.

6. Write a program to solve the three queens problem. (How do you put
three queens on a chess board such that no piece threatens another?)

7. Implement the symbol table (modules sym.c and sym.h of cint) as a
binary tree.

www.manaraa.com

404 Chapter 12

8. Implement the symbol table as a hash tree.

9. Assuming that a binary tree holds a list of symbols arranged alphabeti
cally (as in the examples on pages 385 and 386), write a function that
prints all of the symbols in alphabetic order. Hint: Use recursion.

10. Write a function that balances an unbalanced binary tree. The function
should accept one argument, which is a pointer to the top of the binary
tree. How efficient is your algorithm?

11. Write a program to solve the following problem, called the traveling
salesman problem. A salesman wants to travel to five cities in such an
order that the total number of miles traveled is minimized. Using the
5x5 multidimensional array shown below, which represents distances
between the five cities, write a program that finds the shortest route.

int distances [5) [5) =
/* NY */ { 0, 300, 150, 400, 500} ,
/* Boston */ {300, 0, 150, 700, 800 } ,
/* Hartford */ {150, 150, 0, 500, 700 } ,
/* DC */ {400, 700, 500, 0, 450 } ,
/* Cleveland */ {500, 800, 700, 450, 0 }

} ; /* NY, Bos, Hart, DC, Cleve.
*/

12. If N represents the number of cities in the traveling salesman problem,
how efficient is your algorithm in terms of operations per N? Note that
there is no known efficient solution for this problem. Problems such as
these are known as NP-complete.

www.manaraa.com

Appendix A

The ANSI Runtime Library

Until recently, each compiler manufacturer delivered its own unique library of
runtime routines and there was little effort toward standardization. This state of
affairs wreaked havoc on programmers trying to write portable code. There was
no guarantee that a program using library functions from one compiler manufac
turer would still run when ported to another machine. With ratification of the
ANSI Standard, this situation should improve.

The task of deriving a single set of routines, however, was no simple matter. The
ANSI Committee was faced with literally dozens of existing functions, many
with the same names but with different effects. One of the committee's main
goals was to break as little existing code as possible. The result was a somewhat
larger and less consistent library than anyone really desired. Nevertheless, once
you learn some of its subtleties and quirks, the ANSI C library becomes a
remarkably powerful tool.

The main source for the routines in the ANSI library is the UNIX operating
system. Many of the functions supported by ANSI are exactly the same as those
supported by System V and BSD4.2, while others are very similar. As of this
writing, AT&T, in conjunction with the UNIX Standard IEEE Committee, ap
pears committed to bringing its library into accord with the ANSI Standard.

www.manaraa.com

406 Appendix A

A.1 Function Names
All library function names are reserved as external identifiers. Therefore, you
cannot define a name that matches a library name, even if you are defining a
function that performs the same operation. Likewise, all identifiers beginning
with an underscore are reserved for behind-the-scenes macros. Appendix C
provides a complete list of reserved names.

A.2 Header Files
In addition to the functions themselves, the C runtime library comes with a set of
include files called header files. Every function is associated with one or more
header files that must be included wherever the function is invoked. These files
contain the declarations for any related functions, macros, or data types needed
to execute a set of library functions. Table A-I lists the standard header files.
Note that some of these header files may not be available with your compiler if it
is not ANSI-conforming.

The ANSI Standard guarantees that the header files are idempotent. This means
that multiple inclusions of the same header file will not have adverse effects and
you can include header files in any order.

A.3 Synopses
The form of each function and the header file it requires are provided in a format
called a synopsis. The synopsis format is taken from UNIX documentation and
has the following form:

#include header_file
functionyrototype

For example, the following is the synopsis for the function gets(), which reads a
string from standard input:

#include <stdio.h>
char *gets(char *s);

www.manaraa.com

The ANSI Runtime Library

Header File

<assert.h>

<etype.h>

<erma.h>

<flaat.h>

<limits.h>

<laeale.h>

<math.h>

<setjmp.h>

<signal.h>

<stdarg.h>

<stddef.h>

<stdia.h>

<stdlib.h>

<string.h>

<time.h>

Associated Functions

Diagnostic functions (currently just the assert()
macro).

Character testing and mapping functions.

Defines several macros related to error reporting:
EDOM, ERANGE, and erma.

Defines a number of macros that describe the char
acteristics of floating-point objects in the environ
ment (see Appendix D).

Contains parameter values that describe the execu
tion environment (see Appendix D).

The setloeale() function, which enables you to set
locale parameters.

Double-precision mathematics functions.

The setjmp() and longjmp() functions, which enable
you to bypass the normal function call and return
discipline.

Functions that handle signals.

Functions and macros for implementing functions
that accept a variable number of arguments.

This is a new header file that contains definitions of
five macros: ptrdifLt, size _t, NULL, wehar _t, offse
taf, and ermo. These macros are also defined in any
header file declaring functions that use them.

I/O functions.

General utility functions.

String manipulation functions.

Time manipulation functions.

Table A-t. Header Files for the Runtime Ubrary.

407

www.manaraa.com

408 Appendix A

This tells you that you must include the header file <stdio.h> and that gets()
takes one argument that is a pointer to a char and returns a pointer to a char. To
use gets() in a program, you would include the line

#include <stdio.h>

in your source file. You do not need to declare gets() since any necessary
declarations are performed in the header file. The angle brackets enclosing the
filename inform the compiler to search for the header file in a system-defined
location. So long as your C compiler is installed as directed by the vendor, you
should not need to worry about the reallocation of the header files.

It is also possible to declare a library function explicitly without referring to a
header file. To declare gets(), for instance, you could write

extern char *gets(char *);

However, this can be a dangerous practice for a couple of reasons. First, the
function you declare may refer to other functions or macros that are defined in
the header file. If you don't include the header file, the function may not work.
Second, the library function may have a macro implementation that runs faster
than the real function. By declaring it as a function, you force the system to use
the function version, which makes your program less efficient. For these rea
sons, we recommend that you always include whatever header files are indicated
in the synopsis.

A.4 Functions vs. Macros
As described in Chapter 9, it is often possible to implement a function more
efficiently as a macro. Most C compiler developers take advantage of this
capability by implementing many of the library functions as macros. However,
since this introduces some potential side effect problems, the ANSI Standard
enforces some restrictions to protect you. First, the ANSI Standard ensures that
in any macro implementation, an argument is expanded once and only once.
This avoids the pitfalls associated with side effect operators in the argument
expression (see Box 10-6). Second, the ANSI Standard guarantees that there is
an actual function for each library function listed. This enables you to take the
address of any library function. (gete() and pute() are exceptions to both these
rules.)

In many cases, there exist both a function and a macro that perform the same
operation. By default, the macro gets executed since it is usually faster. If you
want to execute the function instead, you can explicitly #Undef the macro. The
following examples illustrate this principle.

www.manaraa.com

The ANSI Runtime Library

Example 1 - Using the function as defined in the header file (it
may be a macro or it may be a function)

#include <stdio.h>

s = gets(s);

Example 2 - Forcing use of a function instead of a macro

#include <stdio.h>
#undef gets

s = gets(s);

A.5 Error Handling

409

Most library functions return a special value when an error occurs. The error
value differs from routine to routine and is listed in the description of each
individual function. The special macro NUU is often returned as an error value
for functions that return pointers. It is an implementation-defmed null pointer
constant. NUU is defined in all header files that require it.

In some cases, in addition to returning an error value, a function also assigns a
special error code to a global variable (or macro) called errno. errno is declared
in the <errno.h> header file and has type int. For most implementations of C,
each possible errno value is associated with an error message that you can output
with the perror() function. You can also assign the error message to a string with
the strerror() function.

www.manaraa.com

410 Appendix A

A.6 Diagnostics

The C runtime library contains one header file and one macro for outputting
diagnostics. In addition, there are several preprocessor symbols and commands
that can be utilized to print diagnostic information (see Chapter 11). The header
file is called <assert.h>. It defines a macro called assert and refers to another
macro called NDEBUG. NDEBUG, however, is not defined by <assert.h>. In
fact, if NDEBUG is defined when <assert.h> is included, then all subsequent
calls to assert() will have no effect. Hence, NDEBUG provides a useful mecha
nism for turning off diagnostics, as illustrated in the following example.

#define NDEBUG
#include <assert.h>

/* calls to assert() will have no effect */

A.6.1 The assert() Function

#include <assert.h>
void assert (int expression);

According to the ANSI Standard, assert() must be implemented as a macro. The
assert() macro tests the value of expression. If it is nonzero, no action is taken,
and zero is returned. If expression equals zero, assert() writes information about
the program's current status to stderr and then calls abort(). The diagnostic
information contains the value of the expression, the current source file name,
and the current line number. The latter two values are taken from the preproces
sor symbols _FILE_and _LINE _. The assert() macro is used most
frequently to test the status of a function call. For instance,

/* If fopen() returns zero, send status
* information to stderr, and abort.
*/
assert (fp = fopen("file","r"));

Note, however, that!open() will not even be invoked if NDEBUG is defined.

www.manaraa.com

The ANSI Runtime Library 411

A.7 Character Handling
There are two groups of character-handling functions, which are usually imple
mented as macros. The first group, called character-testing /unctions, checks to
see whether the argument is a member of a particular set of characters. The
second group, called case-mapping /unctions, changes a letter from uppercase to
lowercase, or vice versa. These functions are not ASCII-biased. They should
work with any existing character code, including EBCDIC and European codes.
Note, however, that there is some variation concerning how these functions
operate, depending on what character set is being used. In these cases, a mini
mum operation is defined for programs operating in a C locale (see Section A.8
for more information about locales).

A.7 .1 Character-Testing Functions
All of the character-testing functions have a similar format. They accept an int
as the argument and return a nonzero value if the argument is a member of a
specified set of characters. Otherwise they return zero. If the value of the
argument cannot be represented in an unsigned char, the results are undefined.
The generic synopsis is

#include <ctype.h>
int func_name(int c);

Table A-2lists all of the character-testing functions and the set of characters for
which they test membership.

A. 7.2 Character Case-Mapping Functions
There are two case-mapping functions, one that changes a letter from uppercase
to lowercase and another that changes a letter from lowercase to uppercase.
Both functions take an int argument and return an int. If the argument is not
relevant (Le., it is not a letter or it is already the case to which it is being
converted), it is returned unchanged. The synopses for the two functions are

and

#include <ctype.h>
int tolower(int c);

#include <ctype.h>
int toupper(int c);

www.manaraa.com

412

Function

isalnum()

isalpha()

iscntrl()

isdigit()

isgraph()

islower()

isprint()

ispunct()

isspace()

isupper()

isxdigit()

Appendix A

Membership Set

Alphabetic and digit characters (any character
for which isalpha() or isdigitO is true).

Alphabetic characters (any character for which
isupper() or islower() is true, or any implemen
tation-defined set of characters for which
iscntrl(), isdigit(), ispunct(), and isspace() are
false. In the C locale, isalpha() is true only if
islower() or isupper() is true).

Control characters.

Decimal digit characters.

All printable characters except space charac
ters.

Lowercase letters or any implementation-de
fined subset of characters for which iscntrl(),
isdigit(), ispunct(), and isspace() are false.

All printing characters, including space.

All printing characters except a space and
characters for which isalnum() is true.

A space(' '), form feed ('\f'), newline ('\n'),
carriage return ('\r'), horizontal tab ('\t'), or
vertical tab ('\v').

Uppercase letter or any implementation-de
fined subset of characters for which iscntrl(),
isdigit(), ispunct(), and isspace() are false.

Hexadecimal digits.

Table A-2. Character-Testing Functions.

www.manaraa.com

The ANSI Runtime Library 413

A.a Setting Locale Parameters

Though ANSI is a U.S. organization, the C Standards Committee took pains to
make the C language as universal as possible. Among the problems it con
fronted were

• Different alphabets and hence different character sets.

• Different collating sequences in the character set (the numeric codes for
alphabetic characters are not always ordered as they are in ASCII or
EBCDIC).

• Different methods of representing decimal points (a period in the U.S.,
but a comma in many European countries).

• Different ways of displaying times and dates.

A large part of the problem was solved by putting locale-defined behavior into
library functions rather than the language itself. For example, the isalpha()
function can return different results depending on what character set is being
used. This flexibility, however, raised another problem. If a library function has
different interpretations based on locale, how can you force one particular inter
pretation? Also, how can you find out dynamically, while a program is running,
which locale-specific behavior the program will exhibit?

The ANSI Committee solved both of these problems by inventing a function
called setlocale(), which enables you to select a specific locale setting or to
discover the current locale setting. By changing the locale setting, you can
immediately change the action of all relevant functions. Note that these changes
occur at runtime, not at compile time.

www.manaraa.com

414 Appendix A

The header file associated with setlocaleO is <locale.h>. This file contains
definitions of at least six macros that enable you to select a particular part of the
C language that you want to affect with the new locale setting:

LC ALL

LC COLLATE

LC CTYPE

LC MONETARY

LC NUMERIC

LC TIME

The entire language

The strcoll() function

All of the character-handling functions

The monetary formatting information returned by the
locale _ conv() function

The decimal point character for the formatted I/O and
string conversion functions

The stiftime() function

Implementations may define additional macros that begin with LC _. In addition
to the macros, the locale.h header file also defines a structure type named lconv.
The elements of this structure are described in Section A.8.2.

A.8.1 The setJoca/e() Function

#include <locale.h>
char *setlocale(int category, const char *locale);

The setlocale() function sets or queries locale-specific behavior for the part of
the C language specified by category. category should be one of the macros
defined in locale.h.

If locale is a null pointer, the function is interpreted as a query. It returns a string
that represents the current locale setting for the specified category. The only
ANSI-defined locale is "C," which represents the minimal environment for C
translation. Implementations are free to define other locale strings.

You can find out what the implementation-defined locale is by entering a null
string as the second parameter. In this case, setlocale() returns a pointer to the
string associated with the specified category. The program's current locale is not
changed.

www.manaraa.com

The ANSI Runtime Library 415

If locale is not a null pointer, the function is interpreted as a request to change
the locale setting for the specified category. If the request can be honored,
setloeale() returns the locale argument. If the request cannot be honored, set
loeale() returns a null pointer.

At program start-up, the equivalent of

set locale (LC_ALL, "C");

is executed.

A.8.2 The /oca/econv() Function

#include <locale.h>
struct lconv *localeconv(void);

The loealeeonv() function returns a pointer to a structure of type leonv that con
tains appropriate values for formatting numbers and monetary values under the
current locale. The lconv structure contains the members shown below. Any
member with type char * (except deeimalyoint) can point to a null string indi
cating that the locale does not define a format for this object. Likewise, any
member with type char can have the value CHAR_MAX to indicate that there is
no locale-defined value for that member.

char *decimalyoint

char *thousands _ sep

char *grouping

The decimal-point character used to format
nonmonetary values.

The character used to separate groups of digits
(to the left of the decimal point) for nonmonetary
values.

A string whose elements indicate the size of each
group of digits in a nonmonetary value. The
string can contain characters with the following
values:

www.manaraa.com

416

integer value

o

CHAR MAX

Appendix A

The number of digits that
comprise the group.

Use the previous element to
determine the number of
digits to use for the current
group.

No further grouping is to be
performed.

char *int _ curr _symbol
The international currency symbol used by the
current locale. The first three characters indicate
the currency symbol as specified by ISO 4217.
The fourth character defines the character used to
separate the currency symbol from the monetary
unit.

char *currency _symbol
The local currency symbol used by the current
locale.

char *mon _decimal yoint
The decimal point used to format monetary val
ues.

char *mon _thousands _ sep

char *mon _grouping

The character used to separate groups of digits
(to the left of the decimal point) for monetary
values.

A string whose elements indicate the size of each
group of digits in a monetary value (see the de
scription of grouping).

char *negative sign The string used to indicate a negative monetary
value.

char int Jrac _digits

char frac _digits

The number of fractional digits (to the right of
the decimal point) that are displayed in an inter
nationally formatted monetary value.

The number of fractional digits (to the right of
the decimal point) that are displayed in a mone
tary value.

www.manaraa.com

The ANSI Runtime Library 417

char p _ cs yrecedes Set to 1 if the currency symbol precedes the
monetary value when the value is positive, or to
o if the symbol follows the monetary value.

charp_sep_hLspace
Set to 1 if a space separates the currency symbol
from a positive monetary value, or to 0 if there is
no space.

char n _ cs yrecedes Set to 1 if the currency symbol precedes the
monetary value when the value is negative, or to
o if the symbol follows the monetary value.

char n _ sep _by_space
Set to 1 if a space separates the currency symbol
from a negative monetary value, or to 0 if there is
no space.

char p _sign yosn Indicates where the positive sign is positioned for
monetary values.

char n _sign yosn Indicates where the negative sign is positioned
for monetary values. p _sign yosn and
n_sign yosn can have the following values:

o

2

3

4

Parentheses surround the value and
the currency symbol to indicate the
sign.

The sign symbol precedes the value
and currency symbol.

The sign symbol follows the value
and currency symbol.

The sign symbol immediately
precedes the currency symbol.

The sign symbol immediately follows
the currency symbol.

www.manaraa.com

418 Appendix A

A.9 Mathematics

All the math functions require inclusion of the header file <math.h>. This file
contains a definition of the HUGE_VAL macro, which defines the value returned
by all functions when the true result is too large to be represented.

There are two types of errors that can occur: domain errors and range errors. A
domain error occurs when an input argument to the function is outside the legal
domain for argument values. For example, it is a domain error to pass a negative
number to the sqrt() function. In this case, the function returns an implementa
tion-defined value and sets ermo equal to the value of EDOM, which is an
implementation-defined nonzero integer.

A range error occurs when the result of the function cannot be represented in a
double. In this case, ermo receives the value of the macro ERANGE, which
again is an implementation-defined nonzero value. If a range error occurs
because of an underflow (the value is too small), the function returns zero. If an
overflow occurs, then the function returns the value of the macro HUGE_VAL.
Generally, HUGE_VAL is the largest value that can be stored in a double.

Note that EDOM and ERANGE are defined in <ermo.h>, which must be in
cluded if you want to check these values.

The math functions are divided into several groups:

• Trigonometric and Hyperbolic Functions

• Exponential and Logarithmic Functions

• Miscellaneous Math Functions

All of the math functions operate on double values. However, the ANSI Com
mittee plans to add equivalent functions for floats and long doubles some time
in the future. The names of these new functions will be the same as the current
names with an f or I appended. Therefore, you should consider these future
names as reserved to avoid conflicts at a later date.

The functions ecvt(), !cvt(), and gcvt() , which are available on many systems,
were not included in the ANSI Standard because the same functionality can be
obtained through sprintj().

www.manaraa.com

The ANSI Runtime Library 419

A.9.1 Trigonometric and Hyperbolic Functions

With one exception (atan2()), all of the trigonometric and hyperbolic functions
take a double argument and return a double result. The general synopsis is

#include <math.h>
double func_name(double x);

These functions are described in Table A-3 (the atan2() function is listed sepa
rately). The trigonometric functions use radians, not degrees.

A.9.1.1 The atan2() Function

#include <math.h>
double atan2(double y, double x);

The atan2() function returns the principal value of the arc tangent of y/x, using
the signs of both arguments to determine the quadrant of the return value.
Viewed in terms of a Cartesian coordinate system, the result is the angle between
the positive x-axis and a line drawn from the origin through the point (x,y). The
result is in radians and lies between -p and p. A domain error occurs if both
arguments equal zero.

A.9.2 Exponential and Logarithmic Functions

The following library routines perform exponential and logarithmic functions.
Each of these functions returns a double.

A.9.2.1 The exp() Function

#include <math.h>
double exp(double x);

The exp() function returns the exponential function of x. If the magnitude of x is
too large, a range error occurs.

www.manaraa.com

420 Appendix A

Function Operation

acos() Returns the principal value of the arc cosine of
x. The result lies in the range 0 through p. A
domain error occurs if x is less than -lor
greater than 1.

asinO Returns the principal value of the arc sine of x.
The result is in the range -p/2 through p/2. A
domain error occurs if x is less than -lor
greater than 1.

atanO Returns the principal value of the arc tangent of
x. The result is in the range -p/2 through p/2.

cosO Returns the cosine of x, where x is measured in
radians. If x is very large, the result may not be
meaningful.

coshO Returns the hyperbolic cosine of x. A range
error occurs if the magnitude of x is too large.

sinO Returns the sine of x, where x is measured in
radians. If x is very large, the result may not be
meaningful.

sinh() Returns the hyperbolic sine of x. A range error
occurs if the magnitude of x is too large.

tan() Returns the tangent of x, measured in radians.
If x is very large, the result may not be mean-
ingful.

tanh() Returns the hyperbolic tangent of x. A range
error occurs if the magnitude of x is too large.

Table A-3. Trigonometric and Hyperbolic Functions.

www.manaraa.com

The ANSI Runtime Library 421

A.9.2.2 The frexpO Function

#include <math.h>
double frexp(double value, int *exp);

The Jrexp() function converts value into a fraction multiplied by a power of 2.
The fractional part, which is between 0.5 and 1.0, is returned by the function and
the exponential value is stored in the object pointed to by expo If the original
value of value is zero, then both value and the object pointed to by exp are
assigned the value zero.

A.9.2.3 The IdexpO Function

#include <math.h>
double ldexp(double x, int exp);

The ldexp() function multiplies the value x by 2 to the power of exp and returns
the result. If the resulting value is too large to fit in a double, a range error may
occur.

A.9.2.4 The logO Function

#include <math.h>
double log(double x);

The log() function returns the natural logarithm of x. If x is negative, a domain
error occurs. If x is zero, a range error may occur.

A.9.2.S The log10() Function

#include <math.h>
double loglO(double x);

The loglO() function returns the base-ten logarithm of x. If x is negative, a
domain error occurs. If x is zero, a range error may occur.

www.manaraa.com

422 Appendix A

A.9.2.6 The modf() Function

#include <math.h>
double modf(double value, double *iptr);

The modf() function divides value into its integral and fractional parts, each of
which has the same sign as value. The fractional part is returned and the integral
part is stored in the object pointed to by iptr.

A.9.2.7 The pow() Function

#include <math.h>
double pow(double x, double y);

The pow() function returns the value of x raised to the power of y. A domain
error occurs if x is zero and y is less than or equal to zero, or if x is negative and
y is not an integer. If x is zero and y is positive, the result is zero. If x is nonzero
and y is zero, the result is approximately 1.0. If x is negative and y is an integer,
then

pow(x, y

is computed as

pow(-x, y

if Y is even, and as

-pow(-x, y

if y is odd. If the result cannot be stored in a double, a range error may occur.

A.9.2.8 The sqrt() Function

#include <math.h>
double sqrt(double x);

The sqrt() function returns the nonnegative square root of x. If x is negative, a
domain error occurs.

www.manaraa.com

The ANSI Runtime Library 423

A.9.3 Miscellaneous Math Functions

A.9.3.1 The cei/() Function

#include <math.h>
double ceil(double x);

The ceil() function returns the smallest integer not less than x. That is, it rounds
toward positive infinity.

A.9.3.2 The fabs() Function

#include <math.h>
double fabs(double x);

The fabs() function returns the absolute value of x.

A.9.3.3 The floorO Function

#include <math.h>
double floor(double x);

The floor() function returns the largest integer not greater than x. That is, it
rounds toward negative infinity.

A.9.3.4 The fmod() Function

#include <math.h>
double fmod(double x, double y);

The fmodO function returns the floating-point remainder of x divided by y. The
result has the same sign as x. (Note that technically fmodO returns the remain
der, not the modulus, since the sign agrees with x, not with y.) If the quotient of
xl y cannot be represented, the behavior is undefined. If y is zero, the function
returnsx.

www.manaraa.com

424 Appendix A

A.10 Nonlocal Jumps
The C library contains two functions-setjmp() and longjmp()-that enable you
to bypass the nonnal functional call and return procedures. This is particularly
useful for dealing with unusual conditions in low-level functions.

The header file for these functions is <setjmp.h>, which defines a data type
called jmp _ buf. jmp _but is an array capable of holding the infonnation needed
to restore a calling environment.

setjmp() is called once to initialize a jmp _but variable with the current values of
the machine's state (e.g., the values of the stack pointer and frame pointer and
the registers). When longjmp() is called, the machine is reset to the state
contained in the jmp _but array. This causes longjmp() to return to the place
where setjmp() was last called with the same jmp _but variable.

A.10.1 The setjmp() Function
#include <setjmp.h>
int setjmp(jmp_buf env);

The setjmp() function saves the current environment in its jmp _but argument for
later use by the longjmp() function. When setjmp() returns from an initialization
call, it returns zero. When setjmp() returns from a longjmp() call, it returns a
nonzero value.

In some implementations, a setjmp() call can appear only in a comparison ex
pression, where the returned value is compared to an integral constant
expression.

A.10.2 The longjmp() Function
#include <setjmp.h>
void longjmp(jmp_buf env, int val);

The longjmp() function restores the environment saved by the most recent call to
setjmp() with the same env argument. If there has been no such call, or if the
function containing the call to setjmp() has tenninated (i.e., through a return
statement), the behavior is undefined.

After a successfullongjmp() call, all accessible objects have the same value they
had immediately prior to the longjmp() call. The only exceptions are dynamic
variables that are not volatile and have been changed between the calls to
setjmp() and longjmp(). The values of these objects are indetenninate.

If longjmp() is invoked from a nested signal handler (that is, from a function
invoked as a result of a signal raised during the handling of another signal), the

www.manaraa.com

The ANSJ Runtime Library 425

behavior is undefined. In all other interrupt and signal handling situations,
longjmp() should execute correctly.

A.10.3 Example

setjmp() and longjmp() are typically used to recover from an error deep in the
program structure by returning to an earlier state where the program was func
tioning properly. In the following example, we initialize main _loop at the
beginning of the program. Then, whenever error() is invoked, the program
returns to this initial state.

#include <setjmp.h>

main()
{

if (setjmp(main_loop))
printf("Restarting.\n");

for (;;)
{

printf("cint> ");

error (s
char *s;

/* loop body */

printf(" Error %s\n", s);
longjmp(main_loop);

Note that the "Restarting" line is not printed the first time setjmp() is called
because setjmp() returns zero when it is explicitly invoked. When setjmp()
returns via a longjmp() call, however, it returns a nonzero value.

www.manaraa.com

426 Appendix A

A.11 Signal Handling

The C runtime library contains two functions for handling various conditions
that may arise during program execution. These functions are a subset of those
available in the UNIX library. Both functions make use of a number of macros
declared in the header file <signal.h>. The macros and their meanings are listed
in Table A-4. There is no guarantee, however, that an implementation will use
any of these signals (except as the result of explicit calls to raise()). In addition
to the listed names, the ANSI Committee has also reserved all names that begin
with SIG for possible future use.

A.11.1 The signal() Function

#include <signal.h>
void (*signal (int sig, void (*func) (int))) (int);

The June argument to signal() selects one of three methods for subsequent
handling of signal number sig. If the argument is SIG _DFL, then the signal is
handled in the default manner. If the argument is SIG JGN, the signal will be
ignored. Otherwise, June should point to a function that is invoked when the
signal occurs.

Even if June points to a signal-handling function, the system will still execute the
equivalent of

signal (sig, SIG DFL);

before invoking

(*func) (sig);

The function June may terminate in several ways, including calls to abort(),
exit(), or longjmp(). If it returns through a return statement, and the return value
is SIGFPE or any other implementation-defined value that corresponds to an
exception, the behavior is undefined. Otherwise, the program resumes execution
at the point it was interrupted. If the requested change can be honored, signal()
returns the value of June. Otherwise, it returns SIG _ERR and sets errno to
indicate an error.

Since the functions in the C runtime library are not guaranteed to be reentrant,
they may not be used reliably with a signal handler that returns.

www.manaraa.com

The ANSI Runtime Library

Macro

SIGABRT

SIG DFL

SIG ERR

SIGFPE

SIG IGN

SIGILL

SIGINT

SIGSEGV

SIGTERM

Meaning

Abort Signal - Expands to a positive integral con
stant expression that is the signal number corre
sponding to an abnormal termination, such as that
indicated by the abort() function.

Same as SIG JGN, except that it specifies that the
signal is to be handled in an implementation-de
fined manner.

Same as SIG JGN except that it specifies that the
call to signal() is erroneous.

Floating-Point Exception Signal - Expands to a
positive integral constant expression that is the sig
nal number corresponding to an erroneous arithme
tic operation, such as zero divide, or an operation
resulting in overflow.

Expands to a constant expression of type "pointer to
function returning void." Ii is used as an argument
to the signal() function, in place of a function ad
dress, to specify that a giveri signal should be ig-
nored. '

Illegal Instruction Signal .,- Expands to a positive
integral constant expression that is the signal num
ber corresponding to detection of an invalid func
tion image.

Interrupt Signal - Expands to a positive integral
constant expression that is the signal number corre
sponding to receipt of an interactive attention sig
nal.

Segment Violation Signal - Expands to a positive
integral constant expression that is tlte signal num
ber corresponding to an invalid access to storage.

Termination Signal - Expands to a positive inte
gral constant expression that is the signal number
corresponding to a termination request sent to the
program.

Table A-4. Signal-Handling Macros.

427

www.manaraa.com

428

At program start-up, the equivalent of

signal (sig, SIG_IGN)

Appendix A

may be executed for some signals in an implementation-defmed manner.

For all other signals the equivalent of

signal (sig, SIG DFL);

is executed.

A.11.2 The raiseO Function
#include <signal.h>
int raise(int sig);

The raise() function sends the signal sig to the executing program. If successful,
raiser) returns zero; if it is unsuccessful, it returns a nonzero value.

www.manaraa.com

The ANSI Runtime Library 429

A.12 Variable Argument Lists
The C Library contains several tools for writing functions that can accept a
variable number of arguments in a portable fashion. Without using these tools,
you need to know the stack implementation of a particular compiler to write a
variable argument function. The macros and function discussed in this section
enable you to avoid the compiler internals.

To declare a function capable of accepting a variable number of arguments, use
the " ... " prototype syntax. For example, the following defines a function /1 () that
will always be passed at least two arguments, but might be passed more.

void f1 (argl, arg2, ...)
int argl, arg2;

Within/1(), you would use the variable argument macros and functions to proc
ess all of the arguments to /1 (). Wherever /1 () is invoked, there must be a
function allusion of the form

void fl (int, int, ...);

The <stdarg .h> file contains definitions of two macros, one function, and one
data type. The macros are va_start, va_arg, the function is vaJnd, and the type
is va _list. va _list defines an array type suitable for holding information needed
by va _ arg and va_macro. In the following discussion, the name of the array with
this type is ap.

A.12.1 The va_start Macro

#include <stdarg.h>
void va_start (va_list ap, parmN);

The va_start macro initializes the array ap for subsequent use by va_arg and
va_end. It should be invoked before any arguments are processed, The parmN
argument should be the name of the rightmost argument before the three dots.
Continuing our example of/1(), the va_start invocation would be

va_start (ap, arg2);

www.manaraa.com

430 Appendix A

A.12.2 The v8_8rg Macro
#include <stdarg.h>
type va_arg (va_list ap, type);

The va _ arg macro expands to an expression that has the type and value of the
next argument. It should be invoked once for each argument. The argument ap
should be the same argument initialized by the va _start macro. The parameter
type should be the type of the argument (after default conversions to int, un
signed int, or double). For example, if all the arguments to /1 () are integers,
you would write

va_arg(ap, int)

to get the value of each argument. If the type specified in va _ arg does not match
the actual argument type, the behavior is undefmed.

A.12.3 The V8_ end() Function
#include <stdarg.h>
void va_end(va_list ap);

The va _ end() function should be invoked after all of the arguments have been
processed to facilitate a nonnal return from the function. If it is not invoked, .the
behavior is undefined.

A.12.4 Example
The following function accepts from 1 to 20 integer arguments, which it proc
esses and stores in elements ofthe array args[]. The first argument specifies the
total number of arguments in the call.

#include <stdarg.h>
#define MAX ARGS 20

void fl(arg_num,
int arg_num;
{

va_list ap;
int args[MAX_ARGS];
int array_element 1;

va_start (ap, arg_num);
while (arg_num--)

arg[array_element++]
va_end (ap);

va_arg(ap, int);

www.manaraa.com

The ANSI Runtime Library 431

A.13 1/0 Functions
This section describes each standard I/O function in detail. See Chapter 11 for
more general infonnation about how to perfonn I/O using the C library.

A.13.1 The clearerr() Function
#include <stdiO.h>
void clearerr(FILE *stream);

The clearerr() function clears the end-of-file and error indicators associated with
the specified stream. Use ferror() and feof() to see whether these indicators are
set. The only other time these indicators are cleared is when the file is opened or
when a rewind() function is executed. The cleG/"err() function does not return a
value.

A.13.2 The fclose() Function
#include <stdio.h>
int fflush(FILE *stream);

The jclose() function closes the file associated with the specified stream and
disassociates the stream from the file. Before closing the file,fclose() flushes the
associated buffers. If the buffers had been automatically allocated, they are
deallocated. Whenever the exit() function is invoked, it calls jclose() for any
open streams.

The fclose() function returns zero if it successfully closes the stream, or nonzero
if an error occurs. If the stream is already closed,fclose() returns nonzero.

On some operating systems, it is impossible to create a file without writing
something to it. Programs that rely on a file being created, therefore, should
write something to the associated stream before closing it.

A.13.3 The feof() Function
#include <stdio.h>
int feof(FILE *stream);

The feof() function tests the end-of-file indicator for the specified stream to see
whether an end-of-file was encountered in a previous read or write operation. If
the indicator is set, feof() returns a nonzero value; otherwise it returns zero.
Note that feof() does not reset the error indicator so that repeated calls to feof()
will report the same condition over and over. To reset the error indicator, use
clearerr().

www.manaraa.com

432 Appendix A

A.13.4 The ferror() Function
*include <stdio.h>
int ferror(FILE *stream);

The ferror() function tests the error indicator for the specified file to see whether
an error has occurred on a previous read or write operation. If the indicator is
set,ferrorO returns a nonzero value; otherwise it returns zero. Note thatferrorO
does not reset the error indicator so that repeated calls to ferror() will report the
same error over and over. To reset the error indicator, use clearerr().

A.13.5 The fflush{) Function
*include <stdio.h>
int fflush(FILE *stream);

The fflush() function empties the buffer associated with the specified stream,
causing any data in the buffer to be written to the destination file or device. The
stream remains open. If the call is successful, fflush() returns zero; otherwise it
returns a nonzero value.

A.13.6 The fgetc() Function
*include <stdio.h>
int fgetc(FILE *stream);

The fgetc() function fetches the next character from the specified stream, returns
the value after converting it to an int, and advances the associated file position
indicator. Successive calls to fgetc() return successive characters from the
stream. If an end-of-file is encountered, or if an error occurs, fgetc() returns
EOF. Use feofO or ferrorO to determine whether an error or end-of-file oc
curred.

A.13.7 The fgetpos() Function
*include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);

The fgetpos() function stores the current file position indicator in the object
pointed to by pos. It is similar to ftell(), except that the file position indicator
value is stored in an object of type fpos _t, rather than being returned as a long
into The value stored contains implementation-defined information that can only
be used by fsetpos() to reposition the file position indicator to its position at the
time of the fgetpos() call. See the description of fsetpos() for more information.

www.manaraa.com

The ANSI Runtime Library 433

If successful, fgetpos() returns zero. On a failure, fgetpos() returns a nonzero
value and sets errno to an implementation-defined value.

A.13.8 The fgetsO Function
#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

The fgets() function reads characters from the specified stream and assigns them
to the array identified by s. The stream must be open with read access.
Characters are read until a newline or end-of-file is encountered, or until n - 1
characters have been fetched, whichever comes first. Unlike the gets() function,
fgets() includes the terminating newline in the array. fgets() then appends a null
character after the last character assigned, so that the maximum number of array
elements used is n.

If successful,fgets() returns the pointer s. If an end-of-file is encountered before
any characters are read, fgets() leaves the array untouched and returns a null
pointer. If an error occurs, a null pointer is returned, but the contents of the array
are unpredictable.

A.13.9 The fopen() Function
#include <stdio.h>
FILE *fopen(const char *filename,

canst char *mode);

The fopen() function opens a file identified by filename and associates a stream
with the file. The second argument is a pointer to a character string that identi
fies the file access type. Table A-5 shows the legal values for the argument
mode.

Many of these access types were invented by the ANSI Committee, so they may
not be implemented on older compilers. The traditional access types, docu
mented in K&R, are "r", "w", and "a". The corresponding update modes, "r+",
"w+", and "a+", have also been in existence for some time. The types for
accessing binary data (those with a b in them) are new and reflect ANSI's efforts
to develop a consistent library of functions. Formerly, I/O to binary files was
performed through a set of UNIX-derived functions that paralleled the standard
text I/O functions. Now they are merged into one group.

The "ab", "ab+", and "a+b" access modes may initially position the file posi
tion indicator beyond the last data written, due to null padding. The Standard
also leaves it open for compilers to support additional access modes beyond the
ones listed here.

www.manaraa.com

434

Mode

"r"

"w"

"a"

"rb"

''wb''

"ab"

"r+"

"w+"

"a+"

"r+b" or "rb+"

"w+b" or "wb+"

"a+b" or "ab+"

Appendix A

Meaning

Open an existing text file for reading.

Create a new text file for writing or truncate an
existing file.

Open a text file in append mode; writing to the
file occurs at end-of-file marker.

Open a binary file for reading.

Create a new binary file for writing or truncate
an existing binary file.

Open or create a binary file in append mode;
writing occurs at end-of-file marker.

Open an existing text file for reading and writ
ing.

Create a new text file for reading and writing
or truncate an existing file.

Open an existing file or create a new one in
append mode; writing occurs at end-of-file.

Open a binary file for reading and writing.

Create a new binary file for writing or truncate
an existing binary file.

Open an existing binary file or create a new
one for reading and writing in append mode;
writing occurs at end-of-file.

Table A-S. The fopenO Modes.

Opening a file with one of the append modes ("a", "a+", "ab", or "a+b") forces
all subsequent writes to occur at the current end-of-file, regardless of previous
calls to fseek(). After each write operation, the file position indicator is reposi
tioned to the end of the file and the buffer is flushed.

www.manaraa.com

The ANSI Runtime Library 435

Opening a file in read mode (where r is the first character of the mode argument)
fails if the file does not exist or cannot be read.

One peculiarity of the update modes (which stems from the fact that I/O is
buffered) is that you cannot write to a file and then read from it, or vice versa,
without an interveningjseek(),fsetpos(), rewind(), or fflush() call (unless the read
or write operation encounters an end-of-file).

The jopen() function returns a pointer to a structure of type FILE. This pointer,
called ajile pointer, is then used to access the file in subsequent I/O operations.
If an error occurs while opening the file,fopen() returns a null pointer.

A.13.10 The fprintfO Function

#include <stdio.h>
int fprintf(FILE *stream, const char *format, ...
) ;

The fprintf() function enables you to send formatted output to a file. This
function is equivalent to printf(), except that it takes one additional argument,
stream, which lets you specify a stream (the printf() function automatically
writes to the standard output stream stdout). See the description of printf() for
more information.

A.13.11 The fputcO Function

#include <stdio.h>
int fputc(int c, FILE *stream);

The fpute() function writes a single character to the specified stream and ad
vances the associated file position indicator. Note that the character is passed as
an int, but fpute() converts it to an unsigned char before outputting it. jpute()
returns EOF if an error occurs; otherwise it returns the character written.

The ANSI Standard guarantees that fpute() will not be implemented as a macro.
pute() is an equivalent function that may be implemented as a macro. See
Chapter 11 for more information about pute() and fpute().

www.manaraa.com

436 Appendix A

A.13.12 The fputs() Function

#include <stdio.h>
int fputs(const char *s, FILE *stream)

The fputs() function writes the array identified by the pointer s to the specified
stream. Characters from the array are written up to, but not including, the
terminating null character. Note that jjJUts() does not insert a newline as puts()
does. Also note that the string must have a terminating null character or fputs()
will output successive bytes from memory indefinitely. If successful, fputs()
returns zero; otherwise it returns a nonzero value.

A.13.13 The fread() Function

#include <stdio.h>
int fread(void *ptr, size t size, int nelem,

FILE *stream);

The fread() function is used to read a block of binary or text data into an array.
The array is identified by ptr. The argument nelem specifies the number of
elements to read, and size specifies the size of each element in bytes. Normally,
the size is computed by using the sizeof operator. For example,

fread(arr, sizeof(*arr), 100, fp);

reads 100 elements from the stream identified by fp and stores the results in an
array called arr. It is your responsibility to ensure that the array is large enough
to hold the data.

The fread() function concludes when it reads in the specified number of bytes, it
encounters an end-of-file, or a read error occurs. In all three cases, fread()
returns the number of bytes read. If the returned value is less than the number of
bytes specified in the call, you must use ferror() or feof() to determine why
fread() ended prematurely. After a fread() call, the file position indicator is
positioned just after the last byte read. You can reposition it with an fseek() or
rewind() call.

www.manaraa.com

The ANSI· Runtime Library 437

A.13.14 The freopen() Function

#include <stdio.h>
FILE *freopen(const char *filename,

const char *mode, FILE *stream);

The Jreopen() function is used to associate an existing stream with a different
file. Nonnally it is used to redirect the standard streams, stdin, stdout, and
stderr. First, Jreopen() closes the file associated with the stream; then it opens
the file identified by filename and associates the stream to it. The mode argu
ment serves the same role as in an fopen() function. If Jreopen() encounters an
error, it returns a null pointer; otherwise it returns the value of the file pointer
(the third argument).

A.13.15 The fscanf() Function

#include <stdio.h>
int fscanf(FILE *stream, const char *format, ...);

The fscanf() function enables you to read fonnatted data into variables. It is
equivalent to scanf(), except that it takes one additional argument, stream, which
lets you specify an input stream (the scanf() function automatically reads from
stdin). See the description of scanf() for more infonnation.

A.13.16 The fsetpos() Function

#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

The fsetpos() function is designed to be used in conjunction with fgetpos() to
move the file position indicator to the spot specified by the object pointed to by
pos. pos must be a value returned by an earlier call to fgetpos(). The fgetpos()
andfsetpos() functions should be used instead offtell() andfseek() when the file
position indicator value is too large to fit in a long into The fpos _t data type
should be defined by each implementation. to be large enough to hold the largest
possible file position indicator value.

The fsetpos() function clears the end-of-file flag for the specified stream and
undoes the effects of any previous calls to ungetc() on the same stream. Mter an
fsetpos() call, the next operation on the stream can be either input or output.

If successful, fsetpos() returns zero. If it fails, fsetpos() returns a nonzero value
and sets errno to an implementation-defined nonzero value.

www.manaraa.com

438 Appendix A

A.13.17 The fseekO Function
#include <stdio.h>
int fseek(FILE *stream, long offset, int ptrname);

The fseek() function enables you to move the file position indicator in order to
perform random access on a file. The offset refers to the number of bytes from a
fixed position specified by ptrname. ptrname can have one of three values
represented by macros defined in <stdio.h>:

SEEK SET

SEEK CUR

SEEK END

Offset from the beginning of the file.

Offset from the current value of the file position
indicator.

Offset from the end of the file.

Note that the offset can be negative. However, if you attempt to move the file
position indicator before the beginning of the file, the results are unpredictable.

The fseek() function has somewhat different semantics depending on whether the
stream is open in binary or text mode. For binary streams, the name SEEK_END
may not have meaning. For text streams, ptrname must be SEEK_SET and the
offset must be either zero or a value returned by a previous call to fteU().

The fseek() function undoes the effects of an ungetc() function. It also resets the
end-of-file flag. fseek() returns zero if it is successful; if unsuccessful, it returns
a nonzero value.

A.13.18 The ftel/O Function
#include <stdio.h>
long ftell(FILE *stream);

The fteU() function returns the current value of the file position indicator. For
binary streams, this is the number of bytes from the beginning of the file. For
text streams, ftell() returns an implementation-defined value that is suitable for
use as an offset value in an fseek() function. Using the value in an fseek() call
repositions the file position indicator to its position at the time of the fteU() call.

The fteU() function can fail for at least two reasons:

• The stream is associated with a terminal, or other file type, for which
the concept of a file position indicator is meaningless.

• The current value of the file position indicator cannot be represented in
a long int (see the description offsetpos()).

www.manaraa.com

The ANSI Runtime Library 439

If either of these failures occurs,ftell() returns -1 L and sets ermo to an imple
mentation-defined nonzero value.

A.13.19 The fwrite() Function

#include <stdio.h>
int fwrite(const void *ptr, size t size,

size_t nmernb, FILE *stream);

The jWrite() function writes the array pointed to by ptr to the specified stream. It
writes nmemb elements, where each element is size bytes long. Normally, size is
computed by using the sizeof operator. For example,

fwrite(arr, sizeof(*arr), 100, s);

writes 100 elements from array arr to stream s. Note that jWrite() continues
fetching elements from the array until nelem elements have been read, even if
this means going past the end of the array. It is your responsibility to ensure that
the size of the array is at least as long as nelem times size. After the jWrite() call
has completed, the file position indicator is positioned just after the last character
written. jWrite() does not modify the array in any way.

jWrite() returns the number of elements written. Assuming no error occurs, this
will be the same as nmemb.

A.13.20 The getc() Function

#include <stdio.h>
int getc(FILE *stream);

The getc() function reads the next character from the specified stream and
returns it as an int. getc() is equivalent to fgetc() except that it may be imple
mented as a macro instead of a function. If the next character in the stream is an
end-of-file, or if an error occurs during the read operation, getc() returns EOF.
Useferror() orfeof() to determine whether an end-of-file or error occurred.

www.manaraa.com

440

A.13.21 The getchar() Function

#include <stdio.h>
int get char (void);

The getchar() function is equivalent to

getc(stdin)

Appendix A

which is, in fact, how it is implemented by most compilers. It returns the next
character from the standard input stream, or EOF if an end-of-file or error
occurs. Use ferror() or feof() to determine whether an error or end-of-file
occurred.

A.13.22 The gets() Function

#include <stdio.h>
char *gets(char *s);

The gets() function reads characters from the standard input stream (stdin) and
assigns them to the character array identified by s. Characters are read and
assigned until a newline or end-of-file is encountered. gets() is similar to

fgets(s, n , stdin)

where n is a large number. Note, however, that unlike fgets(), gets() does not
allow you to specify a maximum number of characters to read. gets() and fgets()
also differ in the way they handle new lines. If gets() ends by reading a newline,
it absorbs the newline (i.e., positions the file position indicator after the newline)
but does not assign the newline to the array. In contrast, fgets(} includes the
newline in the array. Both gets() andfgets() append a null character after the last
character assigned to the array.

If an end-of-file is encountered before any characters are read, gets() returns a
null pointer and leaves the array untouched. If an error occurs during the read
operation, a null pointer is returned and the contents of the array are unpredict
able. Otherwise, if gets() concludes successfully, it returns s.

www.manaraa.com

The ANSI Runtime Library 441

A.13.23 The perrorO Function

#include <stdio.h>
char *perror(const char *s);

The perror() function returns an error message corresponding to the value of
errno. If s is not a null pointer, perror() writes the string pointed to by s to
stderr, then writes a colon, and then the error message that matches the current
value of errno. If s is a null pointer, perror() returns a pointer to the error
message string but performs no outRut. Note that perror() does not reset errno,
so you should explicitly reset errno tp zero after each perror() call.

A.13.24 The printfO Function

#include <stdio.h>
int printf(const char * format , ...);

The printf() function writes formatted data to the standard output stream (stdout).
The first argument is a character string that may contain text and format control
expressions called conversion specifiers. The remaining arguments represent the
actual data to be written. For each data argument, there should be one, and only
one, conversion specifier in the format string which defines how the data is to be
output. Conversion specifiers and arguments are associated in the order in which
they occur. If there are more data arguments than conversion specifiers, the
remaining data expressions are evaluated and then ignored. If there are more
format specifiers than data arguments, the behavior is implementation-defined.

The printf() function is closely related to the fprintf(), sprintf(), vfprintf(), and
vprintf() functions. They all obey the same formatting rules. The only differ
ence is that printf() always writes to stdin, whereas fprintf() and sprintf() allow
you to specify an output stream or internal buffer, respectively. vprintf() and
vfprintf() are identical to printf() and fprintf() except that the argument list is
replaced by a predeclared argument array. All of these functions return the
number of data arguments written, or a negative number if an error occurs.

www.manaraa.com

442 Appendix A

Each conversion specifier starts with a percent sign (%) and is followed by
optional format modifiers and a conversion character. The conversion character
specifies the type of data (integer, floating-point, or character). The correspond
ing data argument must match this type. The format modifiers control such
things as field width, left and right justification, and the padding character. The
following example shows a simple printf() call.

int j = 5;
printf("The value of j is: %d\nThe value of j\

squared is: %6d", j, j*j);

The output is

The value of j is: 5
The value of j squared is: 25

Note that there is no explicit separator between text and conversion specifiers.
The printf() function knows it has reached the end of a conversion specifier
when it reads a conversion character. In the example, the conversion character is
d, which directs printf() to write an integer in decimal format. The conversion
specifier %d is associated with argumentj, and %6d is associated withj*j. The
6 following the percent sign is a field width. Note in the output that the value is
right-justified by default and padded with spaces on the left.

The legal conversion characters are shown in Table A-6.

www.manaraa.com

The ANSI Runtime Library

Conversion
Character

d,i,o,u,x,X

f

e,E

Effect

Used to format integer output. d and i output
the data item in decimal form; 0 prints the data
in octal form; u prints the unsigned value of the
data item; x and X print the value in hexadeci
mal format. x uses the lowercase letters
abcdef, while X uses ABCDEF. These formats
output as many digits as are required to repre
sent the number. Just before one of these con
version characters, you may enter an h, I, or L.
The h signifies that the corresponding data item
is a short int or unsigned short int, and the I
and L signify that the data item is a long int or
unsigned long into

Prints floating-point values in decimal notation
(i.e., 35.734). The precision designates the
number of digits to appear after the decimal
point. The default precision is 6. If the preci
sion equals zero, the decimal point is not
printed. So long as there is a decimal point,
however, there must be at least one digit to the
left of it, even if the value is less than one (i.e.,
0.3411).

Outputs a floating-point value using scientific
notation (i.e., 3.67e+(8). There is always one
digit to the left of the decimal point. The num
ber of digits to the right of the decimal point is
determined by the precision. The default preci
sion is 6. If the precision is zero, the decimal
point is not printed. The exponent value con
tains at least two digits and as many digits
thereafter as are needed to represent the datum.
The letter separating the decimal value from
the exponent is either e or E depending on
which conversion character you use.

443

Table A-6. printfO Conversion Characters. (continued on next page)

www.manaraa.com

444 Appendix A

Conversion
Character

Effect

g,G

c

s

p

n

%

Uses either for e (E if G is specified), depend
ing on the value of the datum. If the value
would require an exponent less than -4 or
greater than the precision, then e (or E) is used.
Otherwise f is used. The precision specifier
has the same effect it has for the f, e, and E
conversions. Trailing zeros are removed from
the result, and a decimal point is printed only if
it is followed by a digit.

Prints a character. Since the data argument is
passed as an int, printf() prints the least signifi
cant byte.

Prints a string of characters. The data argu
ment should be a pointer to a null-terminated
array. For this conversion format, the precision
is interpreted as the maximum number of char
acters to output. Any additional characters in
the string are ignored. If you do not specify a
precision, all characters up to, but not includ
ing, the terminating null character are printed.

The corresponding data argument should be a
pointer to an object of type void. The value of
the pointer is converted into a sequence of
characters in an implementation-defined man
ner.

Records the number of data items written so
far. The corresponding data argument should
be a pointer to an into printf() fills the int with
the number of objects printed so far.

The sequence % % outputs a percent sign.

Table A-6. printfO Conversion Characters.
(continued from preceding page)

www.manaraa.com

The ANSI Runtime Library 445

The following program illustrates the default format for each conversion charac
ter. The next sections describe how to change the default by specifying a
minimum field width, a precision, left justification, and zero as the pad character.

main()
{

printf("%%d\t%%u\t\t\t%%o\t%%x\n");
printf("%d\t%u\t%o\t%x\n\n", -25, -25, 25, 25);

printf("%%c\t%%s\n");
printf("%c\t%s\n\n", 'A', "String");

printf("%%f\t\t\t%%e\t\t\t\t%%g\n");
printf("%f\t%e\t%g\n", 234.5678, 234.5678,

234.5678);
exit (0);

The output is

%d %u %0 %x
-25 4294967271 31 19

%c %s
A String

%f %e %g
234.567800 0.234568e+03 234.568

www.manaraa.com

446 Appendix A

Flag Characters - There are a number of optional format modifiers that may
come before the conversion character. The first, called aflag character, can be
any of the characters shown in Table A-7.

Flag
Character

+

space

Meaning

Specifies left justification.

Causes all numeric data to be prefixed with a
plus or minus sign. The default, which this
character overrides, is to print a minus sign for
negative numbers but no plus sign for positive
numbers.

Causes negative numbers to be prefixed with a
minus sign and positive numbers to be pre
fixed with a space. (The default is no space for
positive numbers.)

This modifier has various meanings depending
on what conversion character is specified. For
c, d, i, s, and u, this flag has no effect. For 0

conversions, the # flag causes the value to be
prefixed with a zero (the precision is widened if
necessary). For x and X conversions, the value
is prefixed with Ox or OX. For e, E, f, g, and G
conversions, the # causes the result to contain a
decimal point, even if the precision is zero. For
g and G conversions, trailing zeros will not be
removed from the result, as they are normally.

Table A-7. printfO Flag Characters.

www.manaraa.com

The ANSI Runtime Library 447

The following program shows the effects of the flag characters in various situ
ations.

main ()
{

printf("%%5d\t%5d\n", 25);
printf("%%-5d\t%-5d\n", 25);
printf("%%+5d\t%+5d\n\n", 25);
printf("%%o\t%o\n", 25);
printf("%%#o\t%#o\n", 25);
printf("%%x\t%x\n", 25);
printf("%%#x\t%#x\n\n", 25);
printf("%%5.0f\t%5.0f\n", 25.0);
printf("%%#5.0f\t%#5.0f\n\n",25.0);
printf("%%+-5d\t%+-5d\n", 25);
printf("%%+#5.0f\t+#5.0f\n\n", 25.0);
exit (0);

The output is

%5d 25
%-5d 25
%+5d +25

%0 31
%#0 031
%x 19
%#x Ox19

%5.0f 25
%#5.0f 25.

%+-5d +25
%+#5.0f +25.

Note that the flags are not mutually exclusive. You can combine them, as shown
in the last two printf(} calls.

Minimum Field Width - The next optional format component is an optional
minimum field width. This is a decimal constant that represents the minimum
number of characters to output. If the data item requires fewer characters, it is
padded on either the left or the right until the minimum width is reached. (The
default is to pad on the left, but you can specify right padding with the left
adjustment flag.) The default pad character is a space, but you can make it a zero
by making the first digit of the minimum field width a zero. If the value requires

www.manaraa.com

448 Appendix A

more characters than the minimum field width, the field is expanded to accom
modate the data. The value is never truncated.

Another way to express the minimum field width is through a dynamic variable.
In this case, you enter an asterisk (*), which informs the printj() function to use
the next data argument as the field width. The following examples show the
effects of several minimum field width specifications.

main ()
{

printf("%%lOd\t%lOd\n", 25);
printf("%%OlOd\t%OlOd\n", 25);
printf("%%ld\t%ld\n", 25);
printf("%%*f\t%*f\n", 5, 33.87);
printf("%%7f\t%7f\n", 33.87);
exit(0);

The output is

%lOd
%OlOd
%ld
%*f
%7f

25
0000000025
25
33.87000
33.8700000

Note that the 5 in the fourth printj() call corresponds to the asterisk in the format
specifier and represents the minimum field width for the next data item.

Precision Specifier - The next optional component is a precision specifier,
which is designated by a period followed by a decimal constant. For float
ing-point values, the precision determines the number of digits to appear after
the decimal point. For integer values, the precision specifier has the same
meaning as the minimum field width specifier and overrides that specifier. For
strings, the precision specifier denotes the maximum number of characters to
print.

www.manaraa.com

The ANSI Runtime Library

The program below illustrates the effects of several precision specifications.

main ()
{

printf("%%5d\t%5d\n", 25);
printf("%%5.3d\t%5.3d\n", 25);
printf("%%.3d\t%.3d\n", 25);
printf("%%4.3f\t%4.3f\n", 23.45);
printf("%%4.3f\t%4.3f\n", 23.456789);
printf("%%4.3e\t%4.3e\n", 23.456789);

449

printf("%%.lOs\t%.lOs\n", "Print only the first\
ten characters.");

exi t (0);

The output is

%5d
%5.3d
%.3d
%4.3f
%4.3f
%4.3e
%.10s

25
025

025
23.450
23.457
0.235e+02
Print only

Note that for integer conversions, the field is padded with zeros on the left until
the precision length is reached. For floating-point values, if the true value
cannot be expressed in the number of digits reserved by the precision, it is
rounded. Rounding can occur either up or down, depending on the implementa
tion.

Short and Long Specifiers - Just before the conversion character, you may
enter an h, I, or L. The h signifies that the corresponding data item is a short int
or unsigned short int, and the I signifies that the data item is a long int or
unsigned long into These prefixes may only be used for integer specifiers. An
L signifies that the corresponding argument is a long double. Since integral
arguments are converted to int and floating-point arguments are converted to
double when they are passed to printj(), these prefixes ensure that arguments are
cast back to their original type. If used for incompatible types, these flags are
are ignored.

www.manaraa.com

450 Appendix A

A.13.2S The putc() Function
#include <stdio.h>
int putc(int c, FILE *stream);

The pute() function writes a character to the specified stream. It is equivalent to
!pute() except that it may be implemented as a macro instead of a function.
puteO returns EOF if an error occurs; otherwise, it returns the character written.
Note that both the argument and the returned value are iots. pute() outputs the
least significant byte of the argument.

A.13.26 The putchar() Function
#include <stdio.h>
int putchar(int c);

The putehar() function writes its argument to the standard output stream (stdout)
and returns the character written. If an error occurs, putehar() returns EOF.

The expression

putchar(c)

is equivalent to

putc(c, stdout)

A.13.27 The puts() Function
#include <stdio.h>
int puts (const char *s);

The puts() function writes the string pointed to by s to the standard output stream
(stdout) and appends a newline character to the output. The terminating null
character in the array is not written. The call

puts (s)

is equivalent to

fputs(s, stdin)

except that !puts() does not append a newline character. If puts() is successful, it
returns zero; if an error occurs, it returns a nonzero value.

www.manaraa.com

The ANSI Runtime Library 451

A.13.28 The remove() Function

#include <stdia.h>
int remave(canst char *filename);

The remove() function is used to delete the file identified by filename. If you try
to delete a file that is open, the results are implementation-defined. remove()
returns zero if successful or a nonzero value in the event of a failure. This is a
new function that is not included in older C and UNIX libraries.

A.13.29 The renameO Function

#include <stdia.h>
int rename(canst char *old, const char *new);

The rename() function enables you to change the name of a file from the name
pointed to by old to the name pointed to by new. After execution, the name
identified by the pointer old no longer exists. If the file identified by the pointer
old is open, the effect is implementation-defined. Likewise, if the name pointed
to by new already exists, the results are implementation-defined. rename()
returns zero when it succeeds and a nonzero value when it fails.

A.13.30 The rewind() Function

#include <stdio.h>
void rewind (FILE *stream);

The rewind() function moves the file position indicator for stream to the begin
ning of the file. The file identified by stream should be open on a rewind() call.
The function call

rewind (s

is equivalent to

(void)fseek(s, OL, SET_SEEK)

except that the rewind() function clears the end-of-file and error indicators for
the stream and does not return a value.

www.manaraa.com

452 Appendix A

A.13.31 The scanf() Function

#include <stdio.h>
int scanf(FILE *stream, const char *format, ...);

The scanf() function reads data from stdin in a form specified by a format string.
The syntax and semantics of scanf() are, to a large extent, the reverse of the
printf() function. However, there are enough differences that you should not
assume that conversion specifiers behave identically in both functions.

As with the printf() function, the first argument to scanf() is a format string.
There can be any number of data arguments following the format string. Each
one should be the address of a variable where the data is to be stored. The data
type of each pointer argument must match the type specified by the correspond
ing conversion character.

The format string consists of literal characters interspersed with conversion
specifiers. A conversion specifier begins with a percent sign followed by op
tional conversion modifiers and a required conversion character. It designates
how many characters to read and how to interpret them. Characters other than a
conversion string, a space, a newline, or a vertical tab must match characters in
the input stream. A space, horizontal tab, or newline character occurring in the
format string causes scanf() to skip over characters up to the next nonspace
character. For example, the statement

scanf(" Value: %d", &n);

directs scanf() to skip over leading spaces, to read the literal "Value:", and then
to read a decimal constant and store it in the object pointed to by n. If the first
nonspace characters are not "Value:", the function will fail and the results are
unpredictable.

The legal conversion characters and their meanings are shown in Table A-8.

www.manaraa.com

The ANSI Runtime Library

Conversion
Character

d

o

u

x,X

e,E,f,g,G

Effect

Reads a decimal integer. The corresponding
data argument should be a pointer to an integer.

Reads a decimal integer, possibly with a prefix
and/or suffix. Legal prefixes are a minus sign
(-), a plus sign (+), Ox or OX to denote a hexa
decimal constant, and 0 to denote an octal con
stant. Legal suffixes are u or U to denote an
unsigned integer and I or L to denote a long
integer. The corresponding data argument
should be the address of a variable with the
appropriate type.

Reads an octal constant. Even if the constant
does not begin with a 0, it is treated as an octal
value. The corresponding argument should be
the address of an integer variable.

Reads an unsigned decimal constant. The cor
responding data argument should be the address
of an integer variable.

Reads a hexadecimal constant. The corre
sponding data argument should be the address
of an integer variable.

Reads a floating-point constant. The corre
sponding data argument should be a pointer to
a float. (Use an I prefix to indicate that the
corresponding argument is a pointer to a dou
ble and an L prefix to indicate that the corre
sponding argument is a pointer to a long dou
ble.) The floating-point constant may appear in
either decimal or scientific form. These format
characters may be used interchangeably.

453

Table A-B. scanfO Conversion Characters. (continued on next page)

www.manaraa.com

454

Conversion
Character

s

c

p

n

Appendix A

Effect

Reads a character string. Characters are read
until a space, horizontal tab, or newline is en
countered. The corresponding argument should
be a pointer to an array of chars. Each charac
ter in the string is loaded into the subsequent
array element up to, but not including, the ter
minating null character. The scanf() function
automatically adds a null character as the last
character of the string. Since there is no
bounds checking in C, it is your responsibility
to ensure that the character array is long
enough to hold the input string.

Reads the next character in the stream. It does
not skip over spaces, null characters, or tabs.
To read the next nonspace character, use % Is.
If the c conversion character is preceded by a
field width, then the specified number of char
acters are read and the corresponding data argu
ment should be a pointer to an array of chars.
Otherwise, the data argument can be a pointer
to a single char.

Reads a pointer. The actual representation of
the pointer value in the input field is implemen
tation-defined, but it should be the same as that
produced by the %p conversion of printf().
The corresponding data argument must be a
pointer to a pointer to void.

Records the number of characters read thus far
by this scanf() call. No characters are read for
this conversion character. The corresponding
data argument should be a pointer to an integer.

Table A-B. scanfO Conversion Characters. (continued on next page)

www.manaraa.com

The ANSI Runtime Library

Conversion
Character

[scan list]

%

Effect

Reads a character string. If the fIrst character
in the scan list (a list of characters) is not a
circumflex (A), then characters are read from
the input stream until a character is read that is
not a member of the scan list. If the fIrst char
acter is a circumflex, then the scan list serves
as a terminating set-scanf() reads characters
from the input stream until it encounters one of
the characters in the list. The corresponding
data argument should be a pointer to an array of
chars. The array is loaded with the characters
read. scanf() automatically appends a null
character after the last character.

Reads a percent sign. No assignment occurs.

Table A-B. scanfO Conversion Characters.
(continued from preceding pages)

455

Any conversion character may be preceded by a maximum field width or an
assignment suppression flag. The fIeld width is written in the form of a decimal
digit and directs the scanf() function not to read any more than the specifIed
number of characters for that particular item. The assignment suppression flag is
an asterisk (*), which causes scanf() to read the data item but not to assign it to a
variable. Consequently, you should not enter a corresponding data pointer for a
conversion specification with an asterisk.

The scanf() function continues reading characters from the input stream until the
format string is exhausted, or an end-of-file is encountered, or a conflict occurs.
A conflict can occur whenever the next character in the stream does not match
the conversion specifIer. For example, the next character might be a letter,
whereas the conversion specifIer indicates a numeric value. A conflict also
occurs if the format string contains a string literal that is not matched by the next
character in the input stream. Regardless of whether a conflict occurs or whether
scanf() completes successfully, it returns the number of data items assigned.
However, if an end-of-file is encountered before a conversion or conflict takes
place, scanf() returns EOF.

www.manaraa.com

456 Appendix A

The following examples show several ways to read an input stream using
scan/(). Assume that the input stream for all three examples is

The value of pi to 7 digits is 3.1415978

Example 1:

int digits;
float pi;
scanf("The value of pi to %d decimal digits is %f",

&digits, &pi);

The value 7 is loaded into digits and 3.1415978 is assigned to pi. The string
literals are matched and ignored. They serve only to move the file position
indicator so that the numeric data can be read.

Example 2:

short digits;
double pi;
char str[80];
scanf("%19c %hd %*19c %51f", str, &digits, &pi);

In this example, the number of digits and the value of pi are assigned to short
and double variables, respectively. The field width designation in %51f causes
scanf() to read only the first 5 characters of pi (3.1415). The first part of the text
is assigned to the array str[]; the second part has assignment suppressed by the
asterisk. Note that there are only three data arguments even though there are
four conversion specifiers because one of them is suppressed. Also note that the
data argument for the text string is simply str, since an array name by itself is
automatically converted to a pointer to the initial element of the array.

Example 3:

long digits;
long double pi;
str[80];
scanf("%*s %*s %*s %*s %*s %ld %*s %*s %*s %Lf",

&digits, &pi);

The number of digits and the value of pi are assigned to a long and long double,
respectively. Each word in the input text is read by a %s conversion specifier,
but assignment is suppressed.

www.manaraa.com

The ANSI Runtime Library 457

A.13.32 The setbuf() Function

#include <stdio.h>
void setbuf{ FILE *stream, char *buf);

The setbuf() function is used to change the buffering properties of a stream.
Nonnally, input and output are stored in blocks until the block is filled, and then
the entire block is sent to its destination. The size of a block is implementation
defined, but is typically 512 or 1024 bytes. This function enables you to make
the stream unbuffered. When a stream is unbuffered, characters are sent to their
destination immediately. Use setvbuf() to change the size of the buffer.

The setbuf() function should be called only after a stream has been opened and
before it has been read from or written to. Once you have perfonned an I/O
operation on a stream, you cannot change its buffer properties.

To change the default size of a block, you must allocate your own buffer by
declaring an array of chars of the desired block size. Then pass a pointer to this
array as the second argument. Note that this array must exist at least as long as
the stream is open. If it has automatic duration, therefore, make sure that its
scope is wide enough so that it is not deallocated before the stream is closed. To
make a stream unbuffered, pass a null pointer.

The maximum size of a buffer is implementation-defined and is recorded in the
constant B UFSIZ.

The standard output stream stdout is automatically buffered only if the stream
does not point to a tenninal.

The standard diagnostic stream stderr is unbuffered by default.

Except that it returns no value, the setbuf() function is equivalent to setvbuf()
invoked with the values of JOFBF for mode and BUFSIZ for size or (if bufis a
null pointer) with the value JONBF for mode.

A.13.33 The setvbuf() Function

#include <stdio.h>
int setvbuf{ FILE *stream, char *buf, int mode,

size_t size);

The setvbuf() function enables you to change the default buffering parameters for
a stream. Use setvbuf() after you have opened a stream but before you have read
from or written to it.

www.manaraa.com

458 Appendix A

There are three choices for the argument mode, each of which is a macro defined
in stdio.h:

IOFBF forces I/O to be fully buffered.

IOLBF causes output to be line buffered.

IONBF causes I/O to be unbuffered.

If buf is not a null pointer, the array it points to may be used as the buffer instead
of an array automatically allocated by the runtime system. Note, however, that
the array pointed to by buf must have at least as long a lifetime as the stream to
which it is associated.

The argument size specifies the size of the array pointed to by buf. The contents
of this array at any time are indeterminate.

The setvbuf() function returns zero if it is successful. It returns a nonzero value
if the arguments are invalid or if the request cannot be honored for some other
reason.

A.13.34 The sprintf() Function

#include <stdio.h>
int sprintf (char *s, const char *format, '");

The sprintf() function behaves exactly like fprintf() , except that the data is
written to a character array instead of an output stream. sprintfO appends a null
character after the last character written. It returns the number of characters
assigned, not including the terminating null. See the description of printf() for
more information.

The sprintfO function subsumes the older ecvt(),fcvt(), and gcvt() functions.

A.13.35 The sscanf() Function

#include <stdio.h>
int sscanf (char * s, const char * format, ...);

The sscan/() function is the same as fscanf(), except that the first argument
identifies an array rather than a stream from which to read input. See the
description of scan/() for more information.

www.manaraa.com

The ANSI Runtime Library

A.13.36 The tmpfileO Function
#include <stdio.h>
FILE *tmpfile(void);

459

The tmpfile() function creates a temporary binary file. The file is opened with
update status in binary mode (wb+). It is automatically deleted when it is
closed, whether explicitly or implicitly. tmpfile() returns a pointer to the stream
of the new file. If for some reason the file cannot be created, tmpjile() returns a
null pointer.

A.13.37 The tmpnamO Function
#include <stdio.h>
char *tmpnam(char *s);

Like the tmpfile() function, tmpnam() is used to create a temporary file. How
ever, tmpnam() is more flexible than tmpfile(). The tmpnam() function enables
you to open a file in either binary or text mode, and the file is not automatically
deleted.

tmpnam() generates a filename that is guaranteed not to conflict with other
filenames. If you pass a null pointer, tmpnam() generates a file name but leaves
it in an internal static object and returns a pointer to that object. Subsequent calls
to tmpnam() can modify the file name. If you pass a pointer with a nonzero
value, however, tmpnam() assumes that you have allocated enough storage for
the new name so it generates a name, stores it at the passed address, and returns
the pointer argument as the result. The maximum file name length is stored in
L_tmpnam, which is defined in <limits.h>.

The tmpnam() function is guaranteed to generate at least 25 unique names before
it begins duplicating itself. The actual implementation-defined number of
unique names is represented by the constant TMP _MAX. The file that is created
has the same properties as other files created within the C context. You can open
and close it with calls to jopen() and jclose(). To delete it, you must explicitly
remove() it.

A.13.38 The vtprintfO Function
#include <stdarg.h>
#include <stdio.h>
int vfprintf(FILE *stream, const char *format,

va_list arg);

The vfprintf() function can be used in conjunction with the variable argument
macros to perform the same operation as fprintf(). The difference is that the
variable argument list is replaced by the array arg, which must be initialized by

www.manaraa.com

460 Appendix A

the va start macro. See Section A.12 on variable argument macros for more
information.

A.13.39 The vprintf() Function

#include <stdarg.h>
#include <stdio.h>
int vprihtf(const char * format , va_list arg)i

The vprint/() function can be used in conjunction with the variable argument
macros to perform the same operation as print/(). The difference is that the
variable argument list is replaced by the array arg, which must be initialized by
the va_start macro. See Section A.12 on variable argument macros for more
information.

A.13.40 The vsprintf() Function

#include <stdarg.h>
#inciude <stdio.h>
int vsprintf(FILE *stream, const char *format,

va_list arg)i

The vsprint/() function can be used in conjunction with the variable argument
macros to perform the same operation as sprint/(). The difference is that the
variable argument list is replaced by the array arg, which must be initialized by
the va_start macro. See Section A.12 on variable argument macros for more
information.

A.13.41 The ungetc() Function

#include <stdio.h>
int ungetc(int c, FILE *stream)i

The ungetc() function pushes a character (specified by c) back onto the specified
input stream. The pushed character will be the next character read assuming
there is no intervening fseek(). Note that ungetc() affects the buffer, but not the
file or device associated with the stream. Moreover, ungetc() affects the file
position indicator in undefined ways, so it is not wise to mix calls to ungetc()
with calls tofseek() that use the SEEK_CUR mode.

If ungetc() cannot push the character onto a stream, it returns EOF. Otherwise, it
returns c.

www.manaraa.com

The ANSI Runtime Library 461

A.14 General Utilities
The <stdlib.h> header file declares four types and a number of functions that fall
under the category of "general utilities." This group of functions can be further
divided into the following subgroups:

• String Conversion Functions

• Pseudo-Random Number Generation Functions

• Memory Management Functions

• Environment Functions

• Searching and Sorting Functions

• Integer Arithmetic Functions

The types defined in <stdlib.h> are

div t

ldiv t

size t

wchar t

A structure returned by the divO function.

A structure returned by the ldiv() function.

The data type that results from a sizeof expres
sion.

An integral type whose range can represent all
characters in the largest character set supported
by the compiler.

The <stdlib.h> header file also defines several macros:

EXIT FAILURE

EXIT SUCCESS

MB CUR MAX

RAND MAX

An integral expression that can be returned by
the exit() function to indicate unsuccessful termi
nation.

An integral expression that can be returned by
the exit() function to indicate successful termina
tion.

A positive integer expression that represents the
greatest number of bytes that can be used to rep
resent a multibyte character in the current locale.

Expands to an integral constant expression whose
value represents the maximum value returned by
the rand() function.

www.manaraa.com

462 Appendix A

A.14.1 String Conversion Functions

The following functions convert a string of characters into a numeric value. For
example,

atoi("1234")

returns the integer value 1234.

A.14.1.1 The atof() Function

#include <stdlib.h>
double atof(const char *nptr)i

The atof() function converts the string pointed to by nptr into a double value. It
is equivalent to the strtod() function except that it does not have the same error
reporting facilities.

A.14.1.2 The atoi() Function

#include <stdlib.h>
int atoi(const char *nptr)i

The atoi() function converts the string pointed to by nptr into its int representa
tion.

A.14.1.3 The atol() Function

#include <stdlib.h>
long atol(const char *nptr)i

The atol() function converts the string pointed to by nptr into its long int
representation. It is equivalent to the strtol() function except that it does not
include the same error-reporting facilities.

www.manaraa.com

The ANSI Runtime Library 463

A.14.1.4 The strtod() Function
#include <stdlib.h>
double strtod(const char *nptr, char **endptr);

The strtod() function interprets the string pointed to by nptr as a floating-point
value and returns its double representation. The string may contain leading
spaces, which are ignored, followed by an optional plus or minus sign, followed
by the floating-point number in either regular or scientific notation. If the string
represents an integer value (i.e., there is no decimal point), the strtod() function
assumes a decimal point following the last digit. If an inappropriate character
appears before the first digit following an e or E, the exponent is assumed to be
zero.

The function continues reading and processing characters in the string until it
reaches a character that cannot be part of the floating-point value. At this point,
the function concludes and assigns a pointer to the unrecognized character to
endptr (if endptr is a null pointer, however, no assignment takes place).

Assuming successful completion, the strtod() function returns the double value
of the string. If the function cannot decipher a floating-point value, it returns
zero and sets errno to EDOM. It also assigns the value of nptr to the object
pointed to by endptr, assuming endptr is not a null pointer.

If strtodO successfully interprets the floating-point value, but the value is too
large to fit in a double, the function returns HUGE_VAL (or negative
HUGE_VAL if the floating-point value is negative) and sets ermo to ERANGE.
If the floating-point value is too small to be represented in a double, the function
returns zero and sets ermo to ERANGE.

A.14.1.S The strtolO Function
#include <stdlib.h>
long strtol(const char *nptr, char **endptr,

int base);

The stl,tol() function converts the string pointed to by nptr into its long int
representation in any base from 2 through 36. Leading white space is ignored
and an optional plus or minus sign is allowed.

If the base value is zero, then the string is interpreted as a decimal integer
constant, possibly preceded by a plus or minus sign but not including an integer
suffix. Otherwise, the value of base should be between 2 and 36 to indicate the
base to be used for conversion. Bases greater than lOuse alphabetic letters from
a (valued at 10) to z (valued at 35). If the value of base is 16, the integer may
include a OX or Ox prefix to indicate a hexadecimal constant.

The strtol() function continues reading characters until it reaches a character that
cannot be part of the number, A pointer to this character is assigned to endptr.
(If endptr is a null pointer, however, no assignment takes place.)

www.manaraa.com

464 Appendix A

Upon successful completion, strtol() returns the converted value. If it cannot
decipher an integer from the string, it returns zero and sets ermo to EDaM. It
also assigns the value of nptr to the object pointed to by endptr, assuming endptr
is not a null pointer.

If strtol() successfully interprets the integer value but it is too large to fit in a
long int, the function returns LONG_MAX or LONG_MIN, depending on the
sign of the value, and sets ermo to ERANGE.

A.14.1.6 The strtoul() Function

#include <stdlib.h>
unsigned long int strtoul(const char *nptr,

char **endptr, int base);

The strtoul() function converts the string pointed to by nptr into its unsigned
long int representation in any base from 2 through 36. Leading white space is
ignored. An optional plus or minus sign is not allowed.

If the base value is zero, then the string is interpreted as a decimal integer
constant, not including an integer suffix. Otherwise, the value of base should be
between 2 and 36 to indicate the base to be used for conversion. Bases greater
than 10 use alphabetic letters from a (valued at 10) to z (valued at 35). If the
value of base is 16, the integer may include a OX or Ox prefix to indicate a
hexadecimal constant.

The strtol() function continues reading characters until it reaches a character that
cannot be part of the number. A pointer to this character is assigned to endptr.
(If endptr is a null pointer, however, no assignment takes place.)

Upon successful completion, strtol() returns the converted value. If it cannot
decipher an integer from the string, it returns zero and sets ermo to EDaM. It
also assigns the value of nptr to the object pointed to by endptr, assuming endptr
is not a null pointer.

If strtol() successfully interprets the integer value but it is too large to fit in a
unsigned long int, the function returns ULONG _MAX and sets ermo to
ERANGE.

www.manaraa.com

The ANSI Runtime Library

A.14.2 Pseudo-Random Number Generator
Functions

465

The rand() and srand() functions enable you to generate pseudo-random num
bers.

A.14.2.1 The randO Function
#include <stdlib.h>
int rand(void);

The rand() function returns an integer in the range 0 through RAND_MAX.
Successive calls to rand() should produce different integers. However, the
sequence of random numbers could be the same for each program execution
unless you use a different seed value via the srand() function.

A.14.2.2 The srandO Function
#include <stdlib.h>
void srand(unsigned int seed);

The srand() function uses the argument as a seed for a new sequence of pseu
do-random numbers to be returned by subsequent calls to rand(). If srand() is
invoked with the same seed value, the sequence of generated numbers will be the
same. The default seed value is 1.

A.14.3 Memory Management Functions
The memory management functions enable you to allocate and deallocate mem
ory dynamically. See Chapter 7 for more information about these functions.

A.14.3.1 The cal/ocO Function
#include <stdlib.h>
void *calloc(size_t nrnernb, size t size);

The calloc() function allocates contiguous space for nmemb objects, each of
which has a length in bytes specified by size. All bits in the allocated space are
initialized to zero. calloc() returns a pointer to the first byte of the allocated
space. If the space cannot be allocated, or if nelem or size is zero, calloc()
returns a null pointer.

www.manaraa.com

466

A.14.3.2 The freeO Function
#include <stdlib.h>
void free(void *pt~ };

Appendix A

The free() function deallocates the space pointed to by ptr, which should hold an
address returned by a previous call to calloc(), mal/oc(), or real/oc(). If ptr is a
null pointer, free() takes no action. If ptr points to an area that was not previ
ously allocated by one of the memory-management functions, or to an area that
has already been deallocated, the behavior is undefined. Once a memory area
has been freed, you should assume that its contents have been destroyed. You
should not attempt to use the area again. The operating system may recycle the
area for future use, but this is beyond your control.

Note that the ANSI Standard does not support cfree(), which in many implemen
tations is used to free space allocated by cal/oc().

A.14.3.3 The mal/ocO Function
#include <stdlib.h>
void malloc(size_t size };

The mal/oc() function allocates space for an object whose length is specified by
size. mal/oc() returns a pointer to the first byte of the allocated space. If the
space cannot be allocated, or if size is zero, mal/oc() returns a null pointer. The
space allocated by mal/oc() is not initialized to any special value.

A.14.3.4 The real/ocO Function
#include <stdlib.h>
void realloc(void *ptr, size_t size };

The realloc() function changes the size of a previously allocated space. The ptr
argument should hold the address of an area previously allocated by malloc(),
calloc(), or real/oc(). The size argument specifies the new size. If the new size is
smaller than the old size, the unused portion at the end is discarded. If the new
size is larger than the old size, then all of the old contents are preserved and new
memory is tacked on to the end. The new space is not initialized.

real/oc() returns a pointer to the first byte of the new object. If the space cannot
be allocated, real/oc() returns a null pointer but leaves the memory area un
changed. If ptr is a null pointer, real/oc() behaves just like a mal/oc() function.
If size equals zero, realloc() returns a null pointer and frees up the space pointed
to by ptr. If ptr does not point to a previously allocated area, the behavior is
undefined.

www.manaraa.com

The ANSI Runtime Library 467

A.14.4 Environment Functions

The C library contains several functions for communicating with the computer
environment, usually through the operating system. These functions enable you
to exit prematurely from a program, to specify behavior after program termina
tion, and to execute operating system commands.

A.14.4.1 The abortO Function

#include <stdlib.h>
void abort (void);

The abort() function causes abnormal termination of a program. There is no
guarantee that buffers will be flushed, that open streams will be closed, or that
temporary files will be deleted. The abort() function can be turned off by
catching the SIGABRT signal with the signal() function. If the SIGABRT signal
is not caught, the abort() function causes an unsuccessful termination status to be
returned to the host environment by means of the function call

raise(SIGABRT)

If the SIGABRT signal is being ignored, abort() returns no value. Otherwise,
abort() causes program termination, so it cannot return to its caller.

A.14.4.2 The atexitO Function

#include <stdlib.h>
int atexit (void (*func) (void));

The atexit() function provides a program with a convenient way to clean up an
environment before the program exits. The atexit() function takes a pointer to a
function as an argument and registers that function to be called at program
termination. You can register at least 32 functions that will be invoked in the
reverse order from which they are registered. The registered functions may not
themselves take arguments. When the registered functions are executed, the
program environment is the same as when the main() function is called at
program start-up. Therefore, these functions should not use variables declared in
other modules, even if they have fixed duration.

If it succeeds, atexit() returns zero. Otherwise, it returns a nonzero value.

www.manaraa.com

468

A.14.4.3 The exit() Function

#include <stdlib.h>
void exit{ int status);

Appendix A

The exit() function produces normal program termination. First, all functions
registered by the atexit() function are called, in reverse order of their registration.
Next, all open output streams are flushed, all open streams are closed, and all
files created by the tmpjile() function are deleted. Finally, control is returned to
the host environment. If the value of status is zero or EXIT_SUCCESS, the
status returned is successful termination. If the returned value is EXIT _FAIL
URE, an implementation-defined meaning of unsuccessful termination is
indicated. Otherwise the returned status is unsuccessful termination. Invoking
exit() is the same as returning from main(), with the exception that the exit() call
causes all functions registered by atexit() to be invoked.

A.14.4.4 The getenv() Function

#include <stdlib.h>
char *getenv{ canst char *name);

Each environment has an implementation-defined environment list, of which
each entry has the form name == value. The getenv() function matches the
argument string to one of the names in the list and returns the corresponding
value. If the argument does not match any names in the list, a null pointer is
returned.

A.14.4.S The system() Function

#include <stdlib.h>
int system{ canst char *string);

The system() function passes the string pointed to by string to the host environ
ment to be executed. The string should be a command meaningful to the
command processor in the host environment. Before calling system(), you
should close all open files since the operating system may access them in unex
pected ways.

If string is a null pointer, the function call is interpreted as a request to see
whether a command processor exists. system() returns zero if there is no com
mand processor or a nonzero value to indicate that a command processor exists.
If the argument is not a null pointer, system() returns an implementation-defined
value.

www.manaraa.com

The ANSI Runtime Library 469

A.14.S Searching and Sorting Functions
These functions are efficient routines that enable you to search for an object in
an array and to sort an array. Although they are general-purpose routines, they
have usually been finely tuned to run efficiently.

A.14.S.1 The bsearch() Function
#include <stdlib.h>
void bsearch(const void *key, const void *base,

size_t nel, size_t *keysize,
int (* compar) (const void *, const void *));

The bsearch() function searches an array for an element that matches the object
pointed to by key. The array itself is identified by the base argument, which
points to the array's initial element. The net argument specifies the number of
array elements to search through, and keysize represents the size of each element.

The array must have been previously sorted in ascending order according to a
comparison function pointed to by compar. The comparison function, which you
must supply, takes two arguments and returns a negative number if the object
pointed to by the first argument is less than the object pointed to by the second,
zero if the two arguments are equal, or a positive number if the first argument is
greater than the second. The runtime library supplies a standard comparison
function called memcmp().

bsearch() returns a pointer to the matching object in the array or a null pointer if
no match is found. If two members compare as equal, a pointer to either one
may be returned, depending on the implementation.

A.14.S.2 The qsort() Function
#include <stdlib.h>
void qsort(void *base, size_t nel, size_t keysize,

int (* compar) (const void *, const void *));

The qsort() function sorts an array of net objects in ascending order. The initial
element of the array is pointed to by base, and keysize specifies the length of
each object. The array is sorted according to a comparison function pointed to
by compar.

The comparison function, which you must supply, takes two arguments and
returns a negative number if the first argument is less than the second, zero if the
two arguments are equal, or a positive number if the first argument is greater
than the second. The runtime library supplies a standard comparison function
called memcmp(). If two elements in the array are equal, their order is unspeci
fied. qsort() does not return a value.

www.manaraa.com

470

A.14.6 Integer Arithmetic Functions

The following functions take integer arguments.

A.14.6.1 The abs() Function
#include <stdlib.h>
int abs(int i);

Appendix A

The abs() function returns the absolute value of i. If the result cannot be
represented by an int, the behavior is undefined. For example, in two's comple
ment notation, the absolute value of the largest negative number cannot be
represented.

A.14.6.2 The div() Function

#include <stdlib.h>
div_t idiv(int numer, int denom);

The div() function divides denom into numer and returns a structure containing
the quotient and remainder. The structure contains the following members:

int quat;
int rem;

/* quotient */
/* remainder */

If the result cannot be represented, the behavior is undefined.

A.14.6.3 The /abs() Function

#include <stdlib.h>
long int labs(long int j);

The labs() function is equivalent to the abs() function, except that the argument
and return value have type long int.

A.14.6.4 The /div() Function

#include <stdlib.h>
ldiv_t ldiv(long numer, long denom);

The ldiv() function is identical to idiv(), except that the arguments and results are
long iots instead of iots.

www.manaraa.com

The ANSI Runtime Library 471

A.15 String-Handling Functions
The C library contains a number of useful functions for manipulating character
strings. All of these functions require that the header file <string .h> be in
cluded. These functions fall into three general categories:

• Functions that begin with str operate on null-terminated strings.

• Functions that begin with strn operate on strings with a specified maxi
mum length.

• Functions that begin with mem operate on arrays of data objects of
specified length.

The type size _t used by many of these functions is a type defined in string.h,
which is the type returned by a sizeof expression.

A.1S.1 The memchr() Function
#include <string.h>
void *memchr(const void *s, int c, size_t n);

The memchr() function locates the first occurrence of c (converted to an un
signed char) in the array pointed to by s. If it finds the value, memchr() returns
a pointer to it; otherwise, memchr() returns a null pointer.

A.1S.2 The memcmp() Function
#include <string.h>
int memcmp(const void *sl, const void *s2,

size_t n);

The memcmp() function compares the first n characters of sl with s2. Each
element in sl is compared in tum to the corresponding element in s2. As soon as
they differ, memcmp() determines which is numerically greater. If sl is greater,
memcmp() returns a positive value; if s2 is greater, a negative value is returned;
if the two are equal up to n elements, memcmp() returns zero. If there are fewer
than n elements in either array, the results are undefined.

Although the arguments to this function are defined as void *, the function was
really intended to compare character strings. It may not work as expected for
other types of objects. This is especially true for structures that contain holes
and objects that have the high-order bit set. See the description of strcmp() for
contrast.

www.manaraa.com

472 Appendix A

A.1S.3 The memcpy() Function

#include <string.h>
void *memcpy{ void *sl, canst void *s2, size_t n);

The memcpy() function copies n characters from string s2 to string sl. If the
strings overlap, the behavior is undefined. memcpy() returns the value of sl.

A.1S.4 The memmove() Function

#include <string.h>
void memmove{ void *sl, canst void *s2, size t n);

The memmove() function copies n characters from object s2 to object sl. It is
essentially the same as the memcpy() function except that it works even when the
two objects (sl and s2) overlap. The memmove() function acts as if the s2 object
were first copied to a temporary array and then copied from the temporary hold
ing area to sl.

A.1S.S The memset() Function

#include <string.h>
void *memset{ void *s, int c, size_t n);

The memset() function provides a means for initializing an array to a particular
value. It copies the value c (converted to an unsigned char) into the first n
elements of array s. The memset() function returns the value s.

A.1S.6 The strcpy() Function

#include <string.h>
char *strcpy{ char *sl, canst char *s2);

The strcpy() function copies the contents of string s2 into the array pointed to by
sl. The string identified by s2 must have a terminating null character, which is
also copied. If the string and the array overlap, the results are undefined.
strcpy() returns the value of sl. See the descriptions of memcpy() and strncpy()
for contrast.

www.manaraa.com

The ANSI Runtime Library 473

A.1S.7 The strncpy() Function
#include <string.h>
char *strncpy(char *sl, const char *s2, size_t n);

The strncpy() function copies up to n characters from 1:he string s2 into the array
pointed to by s1. If the string to be copied is shorter than n characters, null
characters are appended to the array as padding until n characters have been
written. Note that if the string to be copied is longer than n characters, the array
that gets the copy will not be null-terminated. If the string and the array overlap,
the results are undefined. strcpy() returns the value of s1. See the descriptions
of memcpy() and strcpy() for contrast.

A.1S.8 The strcoll() Function
#include <string.h>
size_t strcoll(char *to, size_t maxsize,

const char *from);

The strcoll() function transforms the string pointed to by from so that it is
suitable as an argument to memcmp() or strcmp(). This is particularly applicable
to implementations where the local language forces text to be stored in an
inconsistent manner. For example, some languages contain so many characters
that they cannot all be stored in a char. The strcollO function makes it possible
for two strings in such an implementation to be compared to one another.

The transformed string is placed in the array pointed at by to. The resulting
string will never be more than twice the length of the original string (plus room
for the terminating null character). You can ensure that even fewer characters
are stored in the to array with the maxsize argument. maxsize represents the
maximum number of characters to be placed in the resulting string, including the
terminating null character.

If the resulting string contains no more than maxsize characters, strcoll() returns
the number of characters placed in the string. Otherwise, it returns zero and the
contents of the to array are indeterminate.

www.manaraa.com

474 Appendix A

A.1S.9 The strcat() Function
#include <string.h>
char *strcat(char *sl, canst char *s2);

The strcat() function appends a copy of string s2 to string sl. The tenninating
null character in sl is overwritten by the initial character in s2. Characters are
copied from s2 until a tenninating null character is reached (the null character is
also copied). The results are undefined if the two strings overlap. In particular,
you cannot necessarily double a string by using the same string as both argu
ments. strcat() returns the value of sl.

A.1S.10 The strncat() Function
#include <string.h>
char *strncat(char *sl, canst char *s2, size_t n);

The strncat() function appends up to n characters from string s2 to the end of
string sl. The tenninating null character in sl is overwritten by the initial
character in s2. If the terminating null character in s2 is reached before n
characters have been written, the null character is copied, but no other characters
are written. If n characters are written before a tenninating null is encountered,
the strncat() function appends its own tenninating null character to sl, so that
n+ 1 characters are written. The results are undefined if the two strings overlap
in memory. strncat() returns sl.

A.1S.11 The strcmp() Function
#include <string.h>
int strcmp(canst char *sl, canst char *s2);

The strcmp() function compares string sl with string s2. If sl is less than s2,
strcmp() returns an integer greater than zero; if sl is less than s2, a negative
integer is returned; and if the two strings are equal, strcmp() returns zero. See
the description of memcmp() for contrast.

A.1S.12 The strerror() Function
#include <string.h>
char *strerrar(int errnum);

The strerror() function returns a pointer to an error message represented by
errnum. The array which holds the message cannot be modified, but it can be
overwritten by subsequent calls to strerror().

www.manaraa.com

The ANSI Runtime Library 475

A.1S.13 The strlen() function

#include <string.h>
size t strlen(canst char *s);

The strlen() function returns the length of the string (number of bytes) pointed to

by s. The terminating null character is not included in the length.

A.1S.14 The strncmp() Function

#include <string.h>
int strncmp(canst char *sl, canst char *s2,

size_t n);

The strncmp() function is the same as strcmp() except that it does not compare
more than n characters. If sl is greater than s2, strncmp() returns an integer
greater than zero; if sl is less than s2, a negative integer is returned; and if the
two strings are equal, strncmp() returns zero.

A.1S.1S The strchr() Function

#include <string.h>
char *strchr(canst char *s, int c);

The strchr() function locates the first occurrence of c (converted to a char) in the
string s. The terminating null character is considered part of the string. If the
character is located, strchr() returns a pointer to it. Otherwise, it returns a null
pointer.

A.1S.16 The strcspn() Function

#include <string.h>
size_t strcspn(canst char *sl, canst char *s2);

Starting from the beginning of sl, the strcspn() function counts characters that
are not present in s2. As soon as it matches a character in the two strings, or it
reaches the end of sl , it returns the number of characters read. The terminating
null character is not considered part of s2.

www.manaraa.com

476 Appendix A

A.1S.17 The strpbrk() function

#inc1ude <string.h>
char *strpbrk(const char *s1, const char *s2);

The strpbrk() function is the inverse of the strcspn() function. It locates the first
character in s 1 that is also present in s2. It returns a pointer to this character, or a
null character if no match occurs. The terminating null characters are not
included.

A.1S.18 The strrchr() Function

#inc1ude <string.h>
char *strrchr(const char *s, int c);

The strrchr() function locates the last occurrence of c (converted to a char) in
string s. It returns a pointer to this character, or a null pointer if the character is
not present in the string.

A.1S.19 The strspn() Function

#inc1ude <string.h>
size_t strspn(const char *sl, const char *s2);

The strspn() function counts characters in sl, starting from the beginning of the
string, until it reaches a character that is not present in s2. It returns the number
of characters counted.

A.1S.20 The strstr() Function

#inc1ude <string.h>
char *strstr(const char *sl, const char *s2);

The strstr() function locates the first occurrence of string s2 (not including the
terminating null character) in the string sl. It returns a pointer to the located
string in sl, or a null pointer if no match occurs.

www.manaraa.com

The ANSI Runtime Library 477

A.1S.21 The strtok() Function

#include <string.h>
char *strtok(char *sl, const char *s2)j

The strtok() function divides a string into a number of tokens. The semantics of
strtok() are somewhat complex. The string sl is the string to be tokenized, while
s2 contains the separator characters. The strtok() function is designed to be
called multiple times to fully tokenize sl. Its behavior on the first call is
somewhat different from its behavior on subsequent calls. The first call to
strtok() operates as follows:

1. strtok() locates the first character in sl that is not contained in s2. If no
such character is found, strtok() returns a null pointer. If such a charac
ter is found, it represents the beginning of the first token. Ultimately a
pointer to this character is returned, but first strtok() finds the end of the
token as described in Step 2.

2. Assuming it finds the beginning of a token, strtok() then looks for a
character that is contained in s2. If it cannot find such a character, then
the token extends to the end of sl, and subsequent searches for a token
will fail. If it does find such a character, it overwrites it with a null
character which terminates the token. The strtokO function then saves a
pointer to the next character in sl for use in subsequent calls.

After the first call, all subsequent calls to strtok() should have NULL as the first
argument. They begin tokenizing where the last strtok() function left off and
behave as described in Step 2. The following example illustrates the behavior of
the strtok() function.

www.manaraa.com

478

#include <stddef.h>
#include <string.h>

main ()

static char s [1
char *token;

"+a+b*(c-d)/e"

token = strtok (s, "+") ; /*

printf("%s\n" 1 token) ;

/* token points to "b*" */
token = strtok (NULL, " (") ;

printf("%s\n", token) ;

/*token points to "c-d" */
token = strtok (NULL, "+*/)"
printf ("%s\n", token) ;

/* token points to If/elf */
token = strtok(NULL, "+");
printf("%s\n", token);

/* token is a null pointer */
token strtok(NULL, "+");
exit (0);

The output is

a
b*
c-d
/e

token
"a" */

) ;

Appendix A

points to

www.manaraa.com

The ANSI·Runtime Library 479

The strxfrm() Function
#include <string.h>
size_t strxfrm(char *sl, const char *s2, size_t n);

The strxfrm() function transforms a string (s2) in some implementation-defined
manner so that it is suitable as an argument to the strcmp() function. The result
ing string is placed in the array pointed to by s1. n specifies the maximum length
of the transformed string (including the terminating null character).

The only requirement on the transformation is that any two strings transformed
by strxfrm() and compared with strcmp() must return the same result as would
occur if they were compared with strcoll() prior to the transformation. In other
words, the transformation may change certain character codes, but the collating
sequence must remain the same.

strxfrm() returns the length of the transformed string, not including the terminat
ing null character.

www.manaraa.com

480 Appendix A

A.16 Multibyte Character Functions

The ANSI standard defmes several runtime routines to assist programmers work
ing with extended character sets that utilize multibyte characters. Whether or not
multibyte characters are in use and the interpretation of each multibyte charac
ter are determined by the value of the LC _TYPE macro and the current locale
setting (see Section A.8).

A.16.1 Character Functions

Multibyte characters can have different shift states which determine how each
multibyte character is interpreted. A programmer can change shift states by forc
ing the system to read special multibyte characters. If a call to one of these
functions changes the shift state, the shift state will remain changed until a sub
sequent call changes it again. Passing a null pointer to any of the following
functions returns the multibyte character system to its initial shift state.

A.16.1.1 The mblen() Function

finclude <stdlib.h>
int mblen(canst char *s, size t n);

If s is not a null pointer, mblen() returns the number of characters composing the
multibyte character pointed to by s. If s points to a null character, mblen() re
turns O. If s does not point to a valid multibyte character, mblen() returns -1.

If s is a null pointer, mblen() sets the multibyte character system to its initial shift
state. The function returns 0 if there is only one shift state and a nonzero value if
there exists more than one shift state.

www.manaraa.com

The ANSI Runtime Library 481

A.16.1.2 The mbtowc() Function

#include <stdlib.h>
int rnbtowc(wchar t *pwc, const char *s, size t n);

If s is not a null pointer, the mbtowc() function converts a multibyte character
into an integer code and stores the code at the address pointed to by pwc. The
mbtowc() function will attempt to determine how many bytes compose each mul
tibyte character and will read that many bytes. At no time, however, will it read
more than n bytes or the number of bytes specified by the MB _CUR_MAX
macro, whichever is less. The value returned by mbtowc() is zero if s points to a
null character, or the number of bytes comprising the multibyte character if
mbtowc() successfully converts it.

If s is a null pointer, mbtowc() sets the multibyte character system to its initial
shift state. The function returns 0 if there is only one shift state and a nonzero
value if there exists more than one shift state.

A.16.1.3 The wctomb() Function

#include <stdlib.h>
int wctornb(char *s, wchar t wchar);

If s is not a null pointer, wctomb() converts a character code into into its multi
byte representation and stores the multibyte character in the array pointed to by
s. wctomb() returns ,the number of characters in the multibyte character. If
wchar does not correspond to a valid multibyte character, wctomb() returns -1.

If s is a null pointer, wctomb() sets the multibyte character system to its initial
shift state. The function returns 0 if there is only one shift state and a nonzero
value if there exists more than one shift state.

www.manaraa.com

482 Appendix A

A.16.2 Multibyte String Functions

A.16.2.1 The mbstowcs() Function
#include <stdlib.h>
size t mbstawcs(wchar_t *pwcs, canst char *s,

size t n);

The mbstowcs() function converts a multibyte character string pointed to by s
into an array of integer codes that correspond to each character. The codes are
placed in the array pointed to by pwcs. mbstowcs() stops reading multibyte
characters as soon as it encounters a null character or it reads n multibyte charac
ters, whichever comes first.

Each mbstowcs() call begins in the initial shift state. Characters that are read
may change the shift state for the duration of the function call, but they have no
effect on subsequent calls to any other function.

mbstowcs() returns the number of converted characters, not including the null
character, if there is one. If mbstowcs() encounters an invalid multibyte charac
ter, it returns -1.

A.16.2.2 The wcstombs() Function
#include <stdlib.h>
size t wcstambs(char *s, canst wchar t *pwcs,

size t n);

The wcstombs() function converts an array of codes pointed to by pwcs into an
array of multibyte characters and stores the characters in the array pointed to by
s. wcstombsO stops converting characters as soon as it encounters a null charac
ter or after it has filled n bytes in the string pointed to by s, whichever comes
first.

Each wcstombs() call begins in the initial shift state. Characters that are read
may change the shift state for the duration of the function call, but they have no
effect on subsequent calls to any other function.

wcstombs() returns the number of bytes written to s, not including the terminat
ing null character, if there is one. If wcstombs() encounters an invalid multibyte
code. it returns -1.

www.manaraa.com

The ANSI Runtime Library 483

A.17 Date and Time Functions
The date and time functions enable you to access the system clock and calendar
in a variety of ways. All of these functions require inclusion of the header file
<time.h>. There are three types of time that these functions return:

• calendar time represents the current date and time according to the
Gregorian calendar;

• local time is the calendar time expressed for a specific time zone;

• daylight savings time reflects a temporary change in the local time due
to daylight savings regulations.

The header file defines one macro and declares three type definitions. The
macro is

CLOCKS PER SEC
Represents the number per second of the value
returned by the clock() function.

The type definitions are

clock t

time t

tm

Arithmetic type capable of representing time.

Arithmetic type capable of representing time.

Structure that holds the components of a calendar
time (see below).

The tm structure contains the following components at least (it may contain
additional components):

int tm_seci /* seconds after the minute [0, 59] */
int tm_mini /* minutes after the hour [0, 59] */
int tm_houri /* hours since midnight [0, 23] */
int tm_mdaYi /* day of the month [1, 31] */
int tm_moni /* months since January [0, 11] */
int tm_yeari /* years since 1900 [] */
int tm_wdaYi /* days since Sunday [0, 6] */
int tm_ydaYi /* days since January 1 --[0, 365] */
int tm_isdsti /* daylight savings time flag */

The value of tm _isdt is positive if daylight savings time is in effect, zero if
daylight savings time is not in effect, and negative if the information is not
available.

www.manaraa.com

484

A.17.1 The clock() Function

#include <time.h>
clock_t clock(void);

Appendix A

The clock() function returns the amount of processor time used by the program.
To get the value in terms of seconds, divide the returned value by the macro
CLOCKS _PER _SEC. The behavior of the clock() function is largely implemen
tation defined. There is no precise defmition for determining when the clock
should start counting, and an implementation only needs to give its best approxi
mation. If the processor time is not available, the clock() function returns -1 cast
to the clock _t type.

A.17.2 The time() Function

#include <time.h>
time_t time(time_t *timer);

The timeO function returns the implementation's best approximation of the cal
endar time. The encoding of the value is unspecified. If timer is not a null
pointer, the calendar time is also assigned to the object that it points to. If the
calendar time is unavailable, time() returns -1.

A.17.3 The mktime() Function

#include <time.h>
time_t mktime(struct tm *timeptr);

The mktime() function converts a broken-down time in a tm structure into a
calendar time of the same form returned by the time() function. The values of
tm _ wday and tm yday are ignored, and the values of the other fields are not
restricted to the values shown in the earlier description of tm. In addition to
returning a calendar time, mktime() also sets the fields in the structure pointed to
by timeptr to appropriate values. This means that if the original values are out of
range, mktime() forces them into the ranges listed above. mktime() also assigns
appropriate values to tm _ wday and tm yday.

If mktime() cannot calculate a returnable calendar time, it returns (time _t)-1.

The following example shows how you might use the mktime() function to write
a function that performs some loop for a specified number of minutes.

www.manaraa.com

The ANSI Runtime Library

#include <time.h>

void do_for_x_minutes(x minutes
int x minutes;

struct tm when;
time t now, deadline;

time (now);
when = *localtime(now);
when.tm min += x minutes; - -
deadline = mktime(when);

/* Do foo() for x_minutes */
while (difftime(time (0), deadline) > 0)

foo () ;

Note that the mktime() function will work even if the expression

when.tm min += x minutes

is greater than 59.

A.17.4 The asctime() Function
#include <time.h>
char *asctime(const struct tm *timeptr);

485

The asctime() function converts the time represented by the structure pointed to
by timeptr into a character string with the following form:

Sun Sep 16 01:03:52 1973\n\0

asctime() returns a pointer to the generated string. Subsequent calls to asctime()
or ctime() may overwrite this string.

A.17.S The ctime() Function
#include <time.h>
char *ctime(const time t *timer);

The ctime() function converts the calendar time pointed to by timer to local time
in the form of a character string. It is equivalent to

asctime(localtime(timer))

www.manaraa.com

486 Appendix A

A.17.6 The difftime() Function
#include <time.h>
double difftime(time_t timel, time_t timeO);

The difftimeO function returns the difference time] - timeD, expressed in sec
onds.

A.17.7 The gmtime() Function
#include <time.h>
struct tm *gmtime(const time_t *timer);

The gmtime() function converts the calendar time pointed to by timer into a
broken-down time, expressed as Greenwich Mean Time (GMT). The gmtime()
function returns a pointer to a structure containing the time components. If the
GMT is not available, gmtime() returns a null pointer. Subsequent calls to
gmtime() or loealtimeO may point to the same static structure tm, which is
overwritten by each call.

A.17.8 The localtime() Function
#include <time.h>
struct tm *localtime(const time_t *timer);

The loealtime() function converts the calendar time pointed to by timer into a
broken-down time, expressed as local time. The loealtime() function returns a
pointer to a structure containing the time components. Subsequent calls to
gmtime() or loealtimeO may point to the same static structure tm, which is
overwritten by each call.

A.17.9 The strftime() Function
#include <time.h>
size t strftime(char *s, size_t maxsize,

const char *format,
const struct tm *timeptr);

The strftimeO function enables you to construct a string containing information
from the structure pointed to by timeptr. The format of strftimeO is similar to
printf(), where the first argument is a format string that can contain text as well
as format specifiers. In this case, however, the format specifiers are replaced
with particular data from the timeptr structure. No more than max _size charac
ters will be placed in the resulting string pointed to by s.

The format specifiers and what they are replaced by are listed in Table A-9. The
exact value and format of each specifier depend on the particular implementation
and the values stored in the structure pointed to by timeptr.

www.manaraa.com

The ANSI Runtime Library

Format
Specifier Meaning

%a The abbreviated weekday name.

%A The full weekday name.

%b The abbreviated month name.

%B The full month name.

%c An appropriate date and time representation.

%d The day of month as a decimal number (01 -
31).

%H The hour (24-hour clock) as a decimal number
(00-23).

%1 The hour (12-hour clock) as a decimal number
(01-12).

%j The day of the year as a decimal number (001 -
386).

%m The month as a decimal number (01 - 12).

%M The minute as a decimal number (00 - 59).

%p Either AM or PM (or the equivalent in the local
language).

%S The second as a decimal number (00 - 59).

Table A-9. Format Specifiers for the ctimeO Function.
(continued on next page)

487

If the total number of characters resulting from replacements is not more than
maxsize. stlftime() returns the number of characters written to the array pointed
to by s (not including the terminating null character). Otherwise. strftime()
returns zero and the contents of the s array are indeterminate.

www.manaraa.com

488 Appendix A

Format
Specifier Meaning

%U The week number of the year (Sunday being
the fIrst day of the week) as a decimal number
(00-52).

%w The weekday as a decimal number (0 - 6) -
Sunday is O.

%W The week number of the year (where Monday
is the fIrst day of the week) as a decimal num-
ber (00 - 52).

%x An appropriate date representation.

%X An appropriate time representation.

%y The year (last two digits only) as a decimal
number (00 - 99).

%y The year (all four digits) as a decimal number.

%Z The time zone name, or no characters if no time
zone exists.

%% %

Table A-9. Format Specifiers for ctimeO Function.
(continued from preceding page)

www.manaraa.com

Appendix B

Syntax of ANSI C

file:

function definition:

www.manaraa.com

490 Appendix B

declaration specifier:

declarator:

declaration:

www.manaraa.com

Syntax of ANSI C

storage class specifier:

-.--1~~--r-.

type specifier:

storage modifier:

~.
volatile

491

www.manaraa.com

492 Appendix B

structure or union specifier:

struct member declaration:

enum specifier:

www.manaraa.com

Syntax of ANSI C 493

parameter type list:

abstract declarator:

initialized declaration list:

www.manaraa.com

494 Appendix B

identifier:

constant:

.. J floating-point I .. -, constant , -,~

... 1 integer 1
--I constant 1 -

.1 enumeration 1 --I constant 1 -
... 1 character I -, constant ,

floating-point constant:

www.manaraa.com

Syntax of ANSI C 495

fractional constant:

integer constant:

character constant: ,--'--------

www.manaraa.com

496 Appendix B

escape sequence:

note: 0 ; octal digit
h ; hexadecimal digit

string literal:

expression:

www.manaraa.com

Syntax of ANSI C

primary expression:

postfix expression:

expression

identifier

identifier

argument expression list:

~ -! ••

497

www.manaraa.com

498 Appendix B

unary operator:

cast expression:

~ sp=er M d:=~r ~

www.manaraa.com

Syntax of ANSI C 499

binary operator:
(in order of decreasing precedence)

www.manaraa.com

500 Appendix B

assignment operator:

statement:

www.manaraa.com

Syntax of ANSI C

labeled statement:

compound statement:

+<D ~ __ ~ ~r--sta-te-men-' ;i.reD--
expression statement:

selection statement:

----r-------.--~

~ expression ~

statement

501

www.manaraa.com

502 Appendix B

iteration statement:

hil statement

jump statement:

preprocessor directive:

www.manaraa.com

Syntax of ANSI C 503

if section:

if group:

elif group:

else group:

www.manaraa.com

504 Appendix B

endif line:

control line:

include

www.manaraa.com

Syntax of ANSI C 505

preprocessing token:
r------,

stringized token:

macro parameter:

.. I identifier 1 ..

concatenated token:

www.manaraa.com

Appendix C

Implementation Limits

Every C compiler imposes certain limitations upon the types of programs it will
compile, such as the maximum length of variable names and the maximum
length of lines in source files. These constraints are called translation limits
because they concern how the compiler translates source text. There are also
numerical limits, which concern the minimum and maximum values that can be
represented by variously typed objects. For both types of limits, the ANSI
Standard defines minimum values. An ANSI-conforming C compiler must
support at least these minimum values but is free to exceed these limitations. In
fact, ANSI recommends that implementations avoid imposing any limits wher
ever possible. Your compiler documentation should list all limits.

C.1 Translation Li m its
An ANSI-conforming compiler must at least support the following:

• 15 nesting levels of compound statements, iteration control structures, and
selection control structures

• 6 nesting levels in conditional compilation

• 12 pointer, array, and function dec1arators modifying a basic type in a dec
laration

www.manaraa.com

Implementation Limits 507

• 32 expressions nested by parentheses

• 31 significant initial characters in an internal identifier or macro name

• 6 significant initial characters in an external identifier

• 511 external identifiers in one source file

• 127 identifiers with block scope in one block

• 1024 macro names simultaneously defmed in one source file

• 31 parameters in one function definition or call

• 31 parameters in one macro definition or invocation

• 509 characters in a source line

• 509 characters in a string literal (after concatenation)

• 32767 bytes in an array or structure

• 8 nesting levels for #included files

• 257 case labels in a switch statement

• 127 members in a single structure or union

• 127 enumeration constants in a single enumeration

• 15 levels of nested structure or union definitions in a declaration

C.2 Numerical Limits
The ANSI Standard defines the mimimum range of values that each scalar type
of object must be able to represent. For integral objects, the low end and high
end of these ranges are recorded in macro constants that are defined in the
limits.h header file. Implementations may, of course, support larger ranges.

For floating-point types, the ANSI Standard defines a number of macros that
describe an implementation's floating-point representation. Thes,e macros are
defined in the float.h header file.

C.2.1 Sizes of Integral Types
The following page lists the macro names defined in limits.h, their meanings,
and their minimum value for ANSI-conforming implementations:

www.manaraa.com

508 Appendix C

Macro Name Value Meaning

CHAR_BIT 8 minimum number of bits for smallest
object that is not a bit field (i.e., a
byte)

SCHAR_MIN -127 minimum value for an object of type
signed char

SCHAR_MAX +127 maximum value for an object of type
signed char

UCHAR_MAX 255 maximum value for an object of type
unsigned char

CHAR_MIN * minimum value for an object of type
char

CHAR_MAX * maximum value for an object of type
char

SHRT_MIN -32767 minimum value for an object of type
short int

SHRT_MAX +32767 maximum value for an object of type
short int

USHRT_MAX 65535 maximum value for an object of type
unsigned short int

INT_MIN -32767 minimum value for an object of type int

INT_MAX +32767 maximum value for an object of type
int

UINT_MAX 65535 maximum value for an object of type
unsigned int

LONG_MIN -2147483647 minimum value for an object of type
long int

LONG_MAX +2147483647 maximum value for an object of type
long int

ULONG_MAX 4294967295 maximum value for an object of type
unsigned long int

* If chars are signed by default, the value of CHAR_MIN should be the same as that of SCHAR_MIN and
the value of CHAR_MAX should be the same as that of SCHAR_MAX. If chars are unsigned by default,
the value of CHAR_MIN should be zero, and the value of CHAR_MAX should be the same as that of
UCHAR MAX.

www.manaraa.com

Implementation Limits 509

C.2.2 Characteristics of Floating-Point Types
The ANSI Standard defines the characteristics of floating-point types in terms of
a model that describes a representation of floating-point numbers and values that
provide information about an implementation's floating-point arithmetic. We
recommend that you read the ANSI Standard for a detailed discussion of this
model. In this section, we present information about the limits for floating-point
objects.

For any floating-point object, there are four limits:

max The largest positive value that can be represented.

min The largest negative value that can be represented.

epsilon The minimum positive number, x, such that
1.0 + x != 1.0

precision The number of decimal digits of preCision.

Each ANSI-conforming compiler provides values for these four limits in names.
These names, however, need not be constants - they can also represent expres
sions evaluated at runtime. The names for each of the floating-point types and
the minimum values that an ANSI-conforming compiler must support are shown
below. Compilers are free to support values greater in magnitude (absolute
value) to those shown, with the same size.

float
double
long double

float
double
long double

float
double
long double

float
double
long double

Maximum Value

FLT_MAX
DBL_MAX
LDBL_MAX

Minimum Value

FLT_MIN
DBL_MIN
LDBL_MIN

Epsilon

FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON

Precision

FLT_DIG
DBL_DIG
LDBL_DIG

1e+37
1e+37
1e+37

1e-37
1e-37
1e-37

1e-5
1e-9
1e-9

6
10
10

www.manaraa.com

Appendix 0

Differences Between the
ANSI and K&R Standards

This appendix summarizes the differences between the K&R standard and the
ANSI Standard. The references listed in each section point to other parts of this
book where you can find more information about the topic.

D.1 Source Translation Differences
The differences listed in this section relate to the lexical analysis stage of compi
lation.

0.1.1 Name Length

ANSI:

K&R:

Compilers must support internal names of at least 31 charac
ters and external names of at least 6 characters.

Compilers must support internal names of at least 8 characters;
external names may be shorter.

Reference: Section 2.3.2 Names; Section 7.3 Global Variables

www.manaraa.com

ANSI/K&R Differences 511

0.1.2 Continuation Character

ANSI:

K&R:

The continuation character may be used to carry names as well
as string literals to the next line.

The continuation character may be used only to continue string
literals.

Reference: Section 2.6.1 Continuation Character

0.1.3 String Concatenation

ANSI:

K&R:

Supports this new feature that causes the compiler to concate
nate adjacent string literals into a single string.

Does not support this feature.

Reference: Box 6-3: String Concatenation

0.1.4 Trigraph Sequences

ANSI:

K&R:

Supports trigraph sequences for entering characters not avail
able on some keyboards.

Does not support trigraph sequences.

Reference: Box 3-4: Trigraph Sequences

0.1.5 Alert and Vertical Tab Escape Sequences

ANSI:

K&R:

Requires compilers to support \a (alert) and \v (vertical tab)
escape sequences.

Does not require compilers to support \a and \v.

Reference: Section 3.3.1 Escape Character Sequences

www.manaraa.com

512 Appendix D

0.1.6 Hexadecimal Escape Sequences

ANSI: Supports escape sequences of the fonn:

\xhhh

where the h's are hexadecimal digits.

K&R: Does not support hexadecimal escape sequences.

Reference: Section 3.3.1 Escape Character Sequences

0.2 Data Type Differences
The entries in this section cover differences in data types.

0.2.1 signed Type Specifier

ANSI:

K&R:

Supports the new keyword signed, which explicitly makes an
integral type signed.

Does not support the signed keyword.

Reference: Box 3 -1: signed Qualifier

0.2.2 long double Type

ANSI: Supports long double type.

K&R: Does not support long double type.

Reference: Box 3-5: long double Type; Section 3.9.4 Mixing Floating-Point
Values

0.2.3 unsigned short, unsigned long, and unsign
char Types

ANSI: Explicitly requires C compilers to support these types.

K&R: Implies that these types are not legal.

Reference: Section 3.2.1 Unsigned Integers; Section 3.10 Typedefs

www.manaraa.com

ANSI/K&R Differences 513

0.2.4 The voidType

ANSI: Included as a new type, an object of which cannot be used.
Pointers to void may be converted to pointers of any other type
object.

K&R: Not supported at all in the original version.

Reference: Section 3.9 The void Type; Box 7-6: Generic Pointers

0.2.5 Enumeration Types

ANSI:

K&R:

Supported as integer type.

Not supported in the original document, though added in a
later draft.

Reference: Section 3.8 Enumeration Types

0.2.6 Byte Length

ANSI: A byte must be at least 8 bits long.

K&R: Bytes have unspecified size.

Reference: Section 3.2 Different Types of Integers

0.2.7 Minimum Ranges for Integral Types

ANSI: Imposes ranges that must be met for each type.

K&R: Does not impose ranges but lists typical sizes.

Reference: Section 3.2 Different Types of Integers; Appendix D-"Imple
mentation Limits"

0.2.8 Unsigned Constants

ANSI:

K&R:

Allows you to append a u or U to an integral constant to make
it unsigned.

Does not support unsigned constants.

Reference: Box 3-3: unsigned Constants

www.manaraa.com

514 Appendix D

0.2.9 "8" and "9" Not Allowed in Octal Constants

ANSI:

K&R:

Does not allow the digits 8 and 9 to be used in an octal
constant.

Allows the use of 8 and 9 (which have octal values 10 and 11).

Reference: Section 3.3 Different Kinds of Integer Constants

0.2.10 float and long double Constants

ANSI:

K&R:

Allows you to append an for F to a floating-point constant to
give it type float, or an I or L to give it type long double.

Does not support float and long double constants.

Reference: Box 3-6: float and long double Constants

0.2.11 Type of Integer Constants

ANSI: Has defined rules for detennining type.

K&R: Rules for type detennination are vague.

Reference: Section 3.3 Different Kinds of Integer Constants

0.2.12 Conversion Rules for Mixing Signed and
unsigned Types

ANSI: Uses value-preserving rules.

K&R: Uses sign-preserving rules.

Reference: Box 3-7: Unsigned Conversions

www.manaraa.com

ANSI/K&R Differences

D.3 Statement Differences
There is only one significant difference concerning control flow statements.

0.3.1 Controlling Expression of a switch
Statement

515

ANSI: Allows the controlling expression of a switch statement to
have any integral type.

K&R: States that the controlling expression must have type int.

Reference: Section 4.2.1 Syntax of a switch Statement

D.4 Expression Differences
This section lists several differences involving the way expressions are eva
luated.

0.4.1 Unsigned Conversions

ANSI:

K&R:

Uses value-preserving rules.

Uses sign-preserving rules.

Reference: Box 3-7 Unsigned Conversions

0.4.2 Unary Plus Operator

ANSI: Supports a unary plus operator.

K&R: Does not support a unary plus operator.

Reference: Section 5.2 Unary Plus and Minus Operators

www.manaraa.com

516 Appendix 0

0.4.3 Float Expressions

ANSI:

K&R:

Does not require the compiler to convert all float operands to
double.

Requires conversion of all float operands to double.

Reference: Section 3.9.4 Mixing Floating-Point Values

0.4.4 Shifting by a long int and unsigned int

ANSI:

K&R:

States that the type of the shift count does not affect the type of
the left-hand operand.

Implies that shifting by a long int or unsigned int forces the
compiler to convert the left operand to a long int or unsigned
int, respectively.

Reference: Section 5.9.1 Shift Operators

0.4.5 Structure Assignment

ANSI:

K&R:

Allows a structure to be assigned to a structure variable, pro
vided that the two operands share the same structure type.

Does not support structure assignment.

Reference: Section 8.1.10 Assigning Structures

0.4.6 Passing Structures as Arguments

ANSI: Supports passing structures as function arguments.

K&R: Does not allow structures to be passed as function arguments.

Reference: Section 8.1.8 Passing Structures

www.manaraa.com

ANSI/K&R Differences 517

0.4.7 Pointers to Functions

ANSI:

K&R:

Allows you to omit the dereferencing operator when invoking
a function through a pointer to a function. If pf is a function,
then

pf () ;

is the same as

(*pf) ()

Implies that the dereferencing operator is required.

Reference: Section 9.3.3 Calling a Function Using Pointers

0.5 Storage Class and Initialization
Differences

The ANSI Standard includes several extensions to storage classes and initializa
tions.

0.5.1 Function Prototypes

ANSI:

K&R:

Supports a new feature that allows you to declare the number
and type of arguments to a function defined elsewhere. Proto
typing enables the compiler to perfonn argument
type-checking.

Not supported.

Reference: Box 9-1: Function Prototypes

0.5.2 The const Storage-Class Modifier

ANSI:

K&R:

Supports const, which indicates that the object's value may not
be changed.

Does not support const.

Reference: Box 7-4: The constStorage-Class Modifier

www.manaraa.com

518 Appendix 0

D.5.3The volatile Storage-Class Modifier

ANSI:

K&R:

Supports volatile, which indicates that the object's value can
change in ways that the compiler cannot predict.

Does not support volatile.

Reference: Box 7-5: The volatile Storage-Class Modifier

0.5.4 Definitions VS. Allusions

ANSI:

K&R:

Uses the presence or absence of an initializer to determine
whether a declaration is a definition or an allusion.

Uses the presence or absence of the extern specifier to deter
mine whether a declaration is a definition or an allusion.

Reference: Section 7.3.1 Definitions and Allusions; Box 7-3 Non-ANSI
Strategies for Declaring Global Variables

0.5.5 Initializing Automatic Arrays and Structures

ANSI: Permitted.

K&R: Not permitted.

Reference: Section 6.3 Initializing Arrays; Box 6-1 Initialization of Arrays;
Section 8.1.1 Initializing Structures

0.5.6 Scope of Function Arguments

ANSI:

K&R:

Arguments declared as function parameters have the same
scope as objects declared in the function's top-level block.

Function arguments may be hidden by declarations of the same
name in the top-level block.

Reference: Box 7-1: Scope of Function Arguments

www.manaraa.com

ANSI/K&R Differences 519

0.5.7 struct and union Name Spaces

ANSI: Each structure and union has its own name space, which means
that fields in different structures or unions can have the same
name without conflict.

K&R: Places all structure and union fields in the same name space.

Reference: Box 8-1: struct and union Name Spaces

0.5.8 Initialization of Union Members

ANSI: Supported - initializes the first member of the union.

K&R: Not supported.

Reference: Box 8-3: Initializing Unions

0.6 Preprocessor Differences
The preprocessor defined by the ANSI Standard differs substantially from the
preprocessor described by K&R.

0.6.1 Formatting Preprocessor Lines

ANSI:

K&R:

Requires the pound sign to be the first nonspace character on
a line.

Requires the pound sign to be the first character on a line.

Reference: Box 10-1: Flexible Formatting of Preprocessor Lines

0.6.2 Recursive Macro Definitions

ANSI:

K&R:

Prevents infinite recursion of a macro by inhibiting the expan
sion of a macro name in its own definition.

Provides no mechanism to avoid infinite recursion of a macro.

Reference: Box 10-5: Using a Macro Name in Its Own Definition

www.manaraa.com

520 Appendix 0

0.6.3 Redefining Macro Names

ANSI:

K&R:

Requires an intervening #Undef of the macro name if the rede
finition is different from the current defmition.

Does not require an intervening #Undef.

Reference: Section 10.1.2 Removing a Macro Definition

0.6.4 String Producer

ANSI:

K&R:

Supports a new preprocessor operator (#) that surrounds its
argument with quotes when it expands.

Does not support the string-producing operator.

Reference: Box 10-8: String Producer

0.6.5 Built-In Macros

ANSI:

K&R:

Requires implementations to define five built-in macros:
LINE, _FILE_, _TIME_, yATE_, _STDC .

Does not require implementations to define any built-in mac
ros (nor does it prohibit them from doing so).

Reference: Section 10.1.4 Built-In Macros

0.6.6 Token Pasting

ANSI:

K&R:

Supports a new preprocessor operator (##) that pastes two
preprocessor tokens.

Does not support the paste operator.

Reference: Box 10-9: Token Pasting

0.6.7 The #elif Oirective

ANSI: Supports #elif.

K&R: Does not support #elif.

Reference: Section 10.2 Conditional Compilation

www.manaraa.com

ANSIIK&RDifferences

0.6.8 The defined Operator

ANSI:

K&R:

Supports the defined preprocessor operator.

Does not support defined.

Reference: Section 10.2.1 Testing Macro Existence

0.6.9 The #error Directive

521

ANSI: Supports #error, which enables you to output error messages
during the preprocessing stage of compilation.

K&R: Does not support #error.

Reference: Box 10-10: The #error Directive

0.6.10 The #pragma Directive

ANSI:

K&R:

Supports #pragma, which allows implementations to add their
own preprocessing directives.

Does not support #pragma.

Reference: Box 10-11: The #pragma Directive

www.manaraa.com

Appendix E

Reserved Names

The C language, as defined by the ANSI Standard, contains a number of reserved
words and names that you should not use as private variable names. The
reserved words fall into several categories:

• Keywords - You may not use keywords for names of objects.

• Runtime Function Names-You should avoid using function names, ex
cept when you want to write your own version of a standard function or
macro.

• Macro Names - The runtime library header files contain definitions for
many constant names. You should avoid using these names for variables.

• Type Names - Some of the header files define types (with typedefs) that
are applied to the arguments or the function return type.

• Preprocessor Command Names - In general, the preprocessor names
do not create conflicts because they must be preceded by a pound sign,
which makes their meaning unambiguous. However, you cannot write
something like

#define define

Table E-I lists all of these reserved names. For macros and functions, the table
also shows where they are defined. Although it is possible to avoid naming
conflicts by not including the header file in which a reserved name is defined,
this is a dangerous practice because you may need to include the header file at a
later date. We recommend that you avoid using these names for private variables.

www.manaraa.com

Reserved Names 523

In addition to the names listed in Table E-l, you should also consider all names
beginning with an underscore to be reserved for system use. Finally, ANSI has
reserved all names beginning with two underscores, or an underscore followed
by an uppercase letter, for future use.

DATE
FILE
_IOFBF
_IOLBF
_IONBF
LlNE
_STDC _
_ TIME_
abort
abs
acos
asctime
asin
assert
atan
atan2
atexit
atof
atoi
atol
auto
break
bsearch
BUFSIZ
calloc
case
ceil
CHAR_BIT
CHAR_MAX
CHAR_MIN
clearerr
clock
clock_t
CLOCKS_PER_SEC
const
continue
cos
cosh
ctime
DBL_MANT_DIG

macro defined by the implementation
macro defined by the implementation
macro defined by the implementation
macro defined by the implementation
macro defined by the implementation
macro defined by the implementation
macro defined by the implementation
macro defined by the implementation
function defined in assert.h
function defined in stdlib.h
function defined in math.h
function defined in time.h
function defined in math.h
macro defined in assert.h
function defined in math.h
function defined in math.h
function defined in stdlib.h
function defined in stdlib.h
function defined in stdlib.h
function defined in stdlib.h
keyword (storage class specifier)
keyword (statement)
function defined in stdlib.h
macro defined in stdio.h
function defined in stdlib.h
keyword (label)
function defined in math.h
macro defined in limits.h
macro defined in lirriits.h
macro defined in limits.h
function defined in stdic.h
function defined in time.h
type defined in time.h
macro defined in time.h
keyword (storage class modifier)
keyword (statement)
function defined in math.h
function defined in math.h
function defined in time.h
macro defined in f/oat.h

Table £-1. Reserved Names.

www.manaraa.com

524

DBl_DIG
DBl_EPSllON
DBl_MIN_EXP
DBl_MIN
DBl_MIN_10_EXP
DBl_MAX_EXP
DBl_MAX
DBl_MAX_10_EXP
default
defined
difftime
div_t
do
double
EDOM
else
enum
EOF
ERANGE
errno
exit
exp
extern
fabs
fclose
feof
ferror
fflush
fgetc
fgetpos
fgets
FilE
float
floor
FlT_EPSllON
FlT_DIG
FlT_MANT_DIG
FLt_MAX
FlT_MAX_EXP
FlT_MAX_10_EXP
FlT_MIN
FlT_MIN_EXP
FlT_MIN_10_EXP
FlT_RADIX
FlT_ROUNDS

Appendix E

macro defined in f/oat.h
macro defined in f/oat.h
macro defined in f/oat.h
macro defined in f/oat.h
macro defined in f/oat.h
macro defined in f/oat.h
macro defined in f/oat.h
macro defined in f/oat.h
keyword (label)
preprocessing operator
function defined in time.h
type defined in stdlib.h
keyword (statement)
keyword (type specifier)
macro defined in f/oat.h
keyword (statement)
keyword (type specifier)
macro defined in stdio.h
macro defiried in f/oat.h
macro defined in stddef.h
function defined in stdlib.h
function defined in math.h
keyword (storage class specifier)
function defined in math.h
function defined in stdio.h
function defined in stdio.h
function defined in stdio.h
function defined in stdio.h
function defined in stdio.h
function defined in stdio.h
function defined in stdio.h
type defined in stdio.h
keyword (type specifier)
function defined in math.h
macro defined in f/oat.h
macro defined in f/oat.h
macro defined in f/oat.h
macro defined in f/oat.h
macro defined in f/oat.h
macro defined in f/oat.h
macro defined in f/oat.h
macro defined in f/oat.h
macro defined in float.h
macro defined in f/oat.h
macro defined in f/oat.h

Table E-1. Reserved Names.

www.manaraa.com

Reserved Names

fmod
fopen
for
fpos_t
fprintf
fpute
fputs
fread
free
freopen
frexp
fseanf
fseek
fsetpos
ftell
fwrite
gete
getehar
getenv
gets
gmtime
goto
HUGE_VAL
if
int
INT MAX
INT_MIN
isalnum
isalpha
isentrl
isdigit
isgraph
islower
isprint
ispunet
isspaee
isupper
isxdigit
jmp_buf
L_tmpnam
labs
LDBL_DIG
LDBL_EPSILON
LDBL_MANT_DIG
LDBL_MAX

function defined in math.h
function defined in stdio.h
keyword (statement)
type defined in stdio.h
function defined in stdio.h
function defined in stdio.h
function defined in stdio.h
function defined in stdio.h
function defined in stdlib.h
function defined in stdio.h
function defined in math.h
function defined in stdio.h
function defined in stdio.h
function defined in stdio.h
function defined in stdio.h
function defined in stdio.h
function defined in stdio.h
function defined in stdio.h
function defined in stdlib.h
function defined in stdio.h
function defined in stdlib.h
keyword (statement)
macro defined in math.h
keyword (statement)
keyword (type specifier)
macro defined in limits.h
macro defined in limits.h
function defined in ctype.h
function defined in ctype.h
function defined in ctype.h
function defined in ctype.h
function defined in ctype.h
function defined in ctype.h
function defined in ctype.h
function defined in ctype.h
function defined in ctype.h
function defined in ctype.h
function defined in ctype.h
type defined in setjmp.h
macro defined in stdio.h
function defined in math.h
macro defined in float.h
macro defined in float.h
macro defined in float.h
macro defined in float.h

Table £-1. Reserved Names.

525

www.manaraa.com

526

LDBL_MAX_EXP
LDBL_MAX_10_EXP
LDBL_MIN
LDBL_MIN_EXP
LDBL_MIN_10_EXP
Idexp
Idiv
Idiv_t
loealtime
log
log10
long
longjmp
LONG_MAX
LONG_MIN
main
malloe
memehr
mememp
memepy
memmove
memset
mktime
modf
NDEBUG
NULL
offsetof
OPEN_MAX
perror
pow
printf
ptrdifCt
pute
putehar
puts
qsort
raise
rand
RAND MAX
realloe
register
remove
rename
return
rewind

macro defined in f/oat.h
macro defined in f/oat.h
macro defined in f/oat.h
macro defined in f/oat.h
macro defined in f/oat.h
function defined in math.h
function defined in std/ib.h
type defined in std/ib.h
function defined in time.h
function defined in math.h
function defined in math.h
keyword (type specifier)
function defined in setjmp.h
macro defined in limits.h
macro defined in /imits.h

Appendix E

function defined by the implementation
function defined in std/ib.h
function defined in string.h
function defined in string.h
function defined in string.h
function defined in string.h
function defined in string.h
function defined in time.h
function defined in math.h
macro defined in assert.h
macro defined in stddef.h
macro defined in stddef.h
macro defined in stdio.h
function defined in stdio.h
function defined in math.h
function defined in stdio.h
type defined in stddef.h
function defined in stdio.h
function defined in stdio.h
function defined in stdio.h
function defined in std/ib.h
function defined in signal.h
function defined in std/ib.h
macro defined in std/ib.h
function defined in std/ib.h
keyword (storage class specifier)
function defined in stdio.h
function defined in stdio.h
keyword (statement)
function defined in stdio.h

Table E-1. Reserved Names.

www.manaraa.com

Reserved Names

SCHAR_MAX
SCHAR_MIN
SEEK_CUR
SEEK END
SEEK_SET
setbuf
setjmp
setlocale
setvbuf
short
SHRT_MAX
SHRT_MIN
sig_atomic_t
SIG_DFL
SIG_ERR
SIG_IGN
SIGABRT
SIGFPE
SIGILL
SIGINT
signal
signed
SIGSEGV
SIGTERM
sin
sinh
size_t
sizeof
sprintf
sqrt
srand
sscanf
static
stderr
stdin
stdout
strcat
strchr
strcmp
strcoll
strcpy
strcspn
strerror
strftime
strlen

macro defined in limits.h
macro defined in limits.h
macro defined in stdio.h
macro defined in stdio.h
macro defined in stdio.h
function defined in stdio.h
function defined in setjmp.h
function defined in locale.h
function defined in stdio.h
keyword (type specifier)
macro defined in limits.h
macro defined in limits.h
type defined in signal.h
macro defined in signal.h
macro defined in signal.h
macro defined in signal.h
macro defined in signal.h
macro defined in signal.h
macro defined in signal.h
macro defined in signal.h
function defined in signal.h
keyword (type specifier)
macro defined in signal.h
macro defined in signal.h
function defined in math.h
function defined in math.h
type defined in stddef.h
keyword (operator)
function defined in stdio.h
function defined in math.h
function defined in stdlib.h
function defined in stdio.h
keyword (storage class specifier)

527

file pointer defined by the implementation
file pointer defined by the implementation
file pointer defined by the implementation
function defined in string.h
function defined in string.h
function defined in string.h
function defined in string.h
function defined in string.h
function defined in string.h
function defined in string.h
function defined in time.h
function defined in string.h

Table E-1. Reserved Names.

www.manaraa.com

528

strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strstr
strtod
strtok
strtol
strtoul
switch
system
tan
tanh
time
time_t
tm
TMP_MAX
tmpfile
tmpnam
tolower
toupper
typedef
UCHAR_MAX
UINT_MAX
ULONG_MAX
ungetc
unsigned
USHRT_MAX
va_arg
va_end
va_list
va_start
vfprintf
void
volatile
vprintf
vsprintf
wchar_t
whHe

function defined in string.h
function defined in string.h
function defined in string.h
function defined in string.h
function defined in string.h
function defined in string.h
function defined in string.h
function defined in string.h
function defined in string.h
function defined in string.h
function defined in string.h
keyword (statement)
function defined in stdlib.h
function defined in math.h
function defined in math.h
function defined in time.h
type defined in time.h
type defined in time.h
macro defined in stdio.h
function defined in stdio.h
function defined in stdio.h
function defined in ctype.h
function defined in ctype.h
keyword (type specifier)
macro defined in limits.h
macro defined in limits.h
macro defined in limits.h
function defined in stdio.h
keyword (type specifier)
macro defined in limits.h
macro defined in stdarg.h
function defined in stdarg.h
type defined in stdarg.h

Appendix E

macro defined in stdarg.h
function defined in stdio.h
keyword (type specifier)
keyword (storage class modifier)
function defined in stdio.h
function defined in stdio.h
macro defined in stddef.h
keyword (statement)

Table £-1. Reserved Names.

www.manaraa.com

Appendix F

C Interpreter Listing

This appendix contains the listing for the C interpreter that we described in Chapter
12. It is written with good software engineering features and can be built using
make. Use the source order form at the end of this book if you would like to order a
floppy containing the source.

Index of Cint Functions

www.manaraa.com

530

File:

File:

File:

File:

File:

File:

File:

Appendix F

lex.h Page

sym.h Page

cint.h Page

token_st.h Page

declare.c Page
array decl•.....••...................•..••.
declare•.......•......•.............
pointer_decl•.•......•.......•.........

expr.c Page
arg_list .•.....•.....•..........................
expression
inc_value .•..•..•..•............................
post op•.....
precedence••..•...•.......................
primary•.••.•.•.... ;•..............•...
push_args•..•.............................
unary expression•..
user_arg_list•..........................

lex.c Page
builtin function•..•..................
get builtin func name•.......
get=builtin=func~tr•...........•
keyword ...•.....••..............................
lexO .••...•....•....••...•......................

i:~=~~~e~ . :
string char••••............•...............
token_name•...............................

522

523

525

527

528
529
529
528

532
532
541
534
538
535
539
533
536
534

544
546
547
547
545
548
547
547
547
545

File: main.c
call_main

Page 553
553
554
554
554
553

main ..••.................•............•.•.......
next_file•..••.....•...••...............
putyrompt•........•......................
stash_file

File: stmt.c Page 556
check_semicolon 556
statement•.................... 556

File: sym.c Page 560
add_sym_type 567
enter_scope 560
firstyaram•............. 568
get_frame_size 561
get_func_start 569
get_func_type 569
get_sym_frame_offset 569
get_sym_name 567
get_sym_storage 569
get_sym_type 568
get_sym_type_desc 568
get_type_desc_next•..... 568
get_type_desc_type•................ 568
leave_scope•............. 561
make_list 561
nextyaram 568

www.manaraa.com

C Interpreter Listing

print_array_type
printyointer_type
print_sym
print_type
scope_level
set_func_start
set_func_sym
set_func_type
set_sym_frame_offset
set_sym_storage
set_sym_type
sym_allocate
sym_arg_allocate
sym_declaring

:E=~~~~r:
sym_table
type_desc_size
type_name

531

565
565
566
565
560
569
561
569
569
569
568
562
563
560
563
564
567
562
562
565

File: token_st.c Page 570
add to token stream 571
bump lIne count 570
current_token 572
err ... 570
get_if_else 577
get_if_exit 577
get_loop_body 578
get_loop_exit 577
get_loop_increment 578
get_loop_test 578
get_next_tokenyc 575
get_tokenyc 575
lex ... 575
ne~t_token. .. 572
pr~nt_newl~ne 573
print_string 572
print_token_list 574
print_value 573
ptoken .. 575
set_if_else 578
set_if_exit 577
set_loop_body 578
set_loop_exit 577
set_loop_increment 578
set_loop_test 578
set_tokenyc 575
skip_token 571
token_list_head 575
unlex ... 571
user_call 576
warn .. 570

File: memory.c Page 579
assign memory to value 579
assign=va1ue_to_memory 581
get_stack_pointer 583
memory .. 579
push_value 583
set_stackyointer 583
static_alloc 583
type_size 582
user free 583
user malloc 583

www.manaraa.com

532 Appendix F

/* lex.h */
typedef enum lex vals {

LEX NULL, SYMBOL, CONSTANT, BUILTIN FUNCTION,
RETURN, IF, ELSE, FOR, SWITCH, WHILE='a', STATIC, EXTERN,
VOID, CHAR, SHORT, INT, LONG, DOUBLE, FLOAT, SIGNED, UNSIGNED,
LSHIFT, RSHIFT, EO, NEO, GEO, LEO, INCREMENT, DECREMENT,
SIZEOF, ~REAK, CONTINUE, LIST, RUN, LAST_TOKEN

} LEX_TOKEN;

lIif _STDC_
extern LEX_TOKEN lex(struct value*) ;
extern LEX_TOKEN lexO(struct value*);
extern LEX_TOKEN current_token();
lIelse
extern LEX_TOKEN lex () ;
extern LEX_TOKEN lexO () ;
extern LEX_TOKEN current_token();
lIendif

www.manaraa.com

C Interpreter Listing

1* sym.h
* Author: P Darnell
* 10/86 Created
* Purpose: declare global types and variables used in Cint
* and manipulated by sym.c
*1

typedef enum storage { STACK, GLOBAL } STORAGE;

typedef enum
T UNKNOWN, T-P0UBLE, T_INT, T_PTR, T_ARRAY, T_STRUCT, T_UNION,
T=FUNC_PTR, T~UNC, T_VOID, T_CHAR, T_SHORT, T_LONG, T_FLOAT
VALUE_TYPE;

533

typedef struct -private_type_desc {
struct -private_type_desc *next;
VALUE_TYPE type;

/* Pointer to next type descriptor */
/* Type of sym *1

int size; /* Size of arrays */
_PRIVATE_TYPE_DESC;

typedef struct -private_sym
STORAGE sym_storage; 1* storage class of sym */

PRIVATE TYPE DESC sym type; /* type of sym */
Tnt - - sym offset; /* memory offset of symbol */
char *sym-name; /* pointer to text name of sym */
1* pointer to next-sym at same scope level *1
struct -private_sym *sym_next;

struct {
VALUE_TYPE func_type; 1* return type of function *1
struct token *func start; 1* pointer to start of function body */
1* pointer to locally scoped symbols */
struct -private_sym **func_sym_list;

func_descriptor;
_PRIVATE_SYM;

ilifdef SYM_OWNER
typedef PRIVATE_SYM SYM;
typedef _PRIVATE_TYPE_DESC TYPE_DESC;

#else
typedef struct
typedef struct

#endit

#it STDC
extern SYM
extern int
extern void
extern void
extern void
extern void
extern void
extern SYM
extern SYM
extern void
extern TYPE_DESC
extern TYPE_DESC
extern VALUE TYPE
extern VALUE TYPE
extern void

char x[sizeof (struct -private_sym)];) SYM;
char =x[sizeof (struct -private_type_desc)];} TYPE_DESC;

sym enter(char);
sym-find(char*, SYM**);
sym-declaring(int);
sym-list ();
pri~t sym(SYM *, int);
init~aram(SYM *);
add-param(SYM *, SYM *);

*next-param();
*first-param(SYM *);
add sym type (SYM*, VALUE TYPE);

get-sym-type desc! SYM);
get-type desc next! TYPE DESC);
get=type=desc=type! TYPE=DESC*);
get_sym_type! SYM*);
set_sym_type! SYM *, VALUE TYPE);

www.manaraa.com

534

extern void
extern int
extern void
extern STORAGE
extern void
extern struct token
extern void
extern VALUE TYPE
#else
extern SYM
extern int
extern void
extern void
extern void
extern void
extern void
extern SYM
extern SYM
extern void
extern TYPE_DESC
extern TYPE_DESC
extern VALUE_TYPE
extern VALUE TYPE
extern void
extern void
extern int
extern void
extern STORAGE
extern void
extern struct token
extern void
extern VALUE_TYPE
#endif

set sym frame offset(SYM *, int);
get-sym-frame-offset(SYM *);
set-sym-storage(SYM *, STORAGE);
get-sym-storage(SYM *);
set-fune start (SYM *, struct token

*get func start(SYM *);
set-func=type(SYM *, VALUE TYPE);
get_func_type(SYM *);

*sym enter();
sym -find();
sym-declaring();
sym -list () ;
pri"ilt sym();
inityaram () i

addyaram() ;
*nextyaram() ;
*firstyaram () ;

add sym type () ;
*get-sym-type desc();
*get-type dese next();
get=type=desc_type();
get_sym_type ();
set sym type () ;
set-sym-frame offset();
get-s~frame-offset() ;
set sym storage();
get=sym=storage() ;
set_func_start();

*get_func_start();
set func_type();
get_func_type() ;

Appendix F

*) ;

www.manaraa.com

C Interpreter Listing

/* cint.h
* Author: P Darnell
* 10/86 Created
* Purpose: declare global types and variables used in Cint
*/

typedef char MEMORY;
typedef int BUILTIN PTR;
typedef int (*FUNC_PTR) ();

typedef struct value
VALUE TYPE type; /* Type of this value */
union-{ /* Value of this value */

int i[sizeof(double) / sizeof(int)];
int fix;
double fIt;
MEMORY *mptr;
SYM *sym;
struct value *ptr;
BUILTIN_PTR builtin-ptr;
struct {

struct token *loop_test;
struct token *loop body;
struct token *loop-incrementi
struct token *loop-exiti
loop_descriptor; -

struct {
struct token *if_exit;
struct token *if else;
if_descriptor; -

value;
VALUE;

struct
char executing; /* True if executing program */
char using token stream; /* True if using internal token stream
char saving token stream; /* True if saving tokens to stream */
char returning; - /* True if return stmt executed */

535

*/

char calc mode; /* True if new line is expression terminator
char prompting;
state;

int lex_debug;
int exp_debug;
int stmt_debug;

ildefine TRUE
ildefine FALSE

ilifndef NULL
iI define NULL 0
ilendif

/*
/*
/*

1
0

Set to true
Set to true
Set to true

/* True if we want a statement prompt */

to get lex debug info */
to get expression debug info */
to get statement debug info */

void
void
MEMORY
void

assign memory to value(VALUE *, MEMORY *, VALUE TYPE);
assign-value to memory(VALUE *, MEMORY *, VALUE=TYPE);

*memory(SYM *) ;-
err(char*,);

*/

www.manaraa.com

536

void
char
FUNC PTR
struct token
struct token
struct token
struct token
void
void
void
void
#else
void
void
char
FUNC PTR
struct token
struct token
struct token
struct token
void
void
void
void
MEMORY
#endif

Appendix F

warn(char*,);
*get builtin func name(BUILTIN PTR);
get=builtin=func~tr(BUILTIN PTR);

*get loop test (struct token *);
*get-loop-body(struct token *);
*get-loop-increment(struct token *);
*get-loop-exit(struct token *);
set=loop=test(struct token *, struct token *);
set loop body(struct token *, struct token *);
set-loop-increment(struct token *, struct token *)i
set=loop=exit(struct token *, struct token *);

err () ;
warn () ;

*get builtin func name();
get=builtin=func~tr();

*get loop teste);
*get-loop-body();
*get-loop-increment();
*get-loop-exit() ;
set-loop-test() ;
set-loop-body();
set-loop-increment();
set=loop=exit() ;

*memory();

www.manaraa.com

C Interpreter Listing

*ifdef TOKEN_OWNER
typedef struct token

struct token *tk next;
LEX_TOKEN tk-token;
struct value tk-value;

/* Pointer to next token */
/* Enumerated type of token */
/* value of token */

537

short tk=line; /* Source line of token definition */
TOKEN;

*else
typedef struct token { char filler; I TOKEN;

lIendif

TOKEN *get_token-pc();
Hf STDC
void:print-Value(struct value *);
void print-token list(TOKEN *);
*endif - -

www.manaraa.com

538 Appendix F

/* declare.c
* Author: P. Darnell
* 9/86 Initial coding.
* 11/86 Added arrays.
* Purpose: To parse declarations, set the types of variables in the
* symbol table, and allocate space for the variables in memory.
*/

finclude "lex.h"
finclude IItoken_st.hu
#include II syrn .h n

ifinclude "cint.h"

/*==
* Function: pointer decl(base type)
* Purpose: parse and modify sYmbol table entry for pointer declarations.
* Algorithm:
* Recursively calls itself for each '*' prefix to symbol.
* Symbol entry is only modified if we are not in execution mode.
* Inputs:

base type - type that the pointer points at.
* Result, pointer to sym entry for declared variable.
=======================~==/

/* Note use of static storage class modifier to pointer_decl to
* restrict this function name to file scope.
*/

static SYM *pointer decl(base type)
VALUE_TYPE base_type; -

VALUE v;
SYM *sym = NULL;
LEX_TOKEN token;

token = lex(&v);
/*

* Note use of cast (int) to suppress possible mismatch between int type of
* the char constant ,*, and enum type of token
*/

if «int) token == '*')
{

/* Note use of recursion */
sym = pointer decl(base type);
if (!state.executing) -

add_sym_type(sym, T_PTR);
J
else if (token == SYMBOL)
{

sym = v.value.sym;
if (!state.executing)

set_sym_type(sym, base_type);

return sym;

www.manaraa.com

C Interpreter Listing

/*~~~~~~~~~~~~~~~~~===========~~~~~~~~==~~~~~~~~~~~=~~=~~=========

* Function: array decl(sym)
* Purpose: parse array declaration and modify type entry for sym
* Algorithm:
* Recursively look for trailing []'s.

if array modifiers are found, modify sym type appropriately.
* Inputs:

sym - pointer to sym entry to be modified by []'s
* Result:
* First token to follow']', or original token if no ' [' found
==/

static LEX_TOKEN array_decl(sym)
SYM *sym;

LEX_TOKEN token;
VALUE v;

token = lex(&v);
if «int) token == , [')
{

/* Parse dimension size *1
expression (0, &v, 0);

/* Array declaration */

if «int) current token() != ']')
err ("Missing r], in array declaration\nn) ;

/* Recursively look for more array modifiers */
token = array_decl(sym);

if (!state.executing)
{

if (v. type ! = 'r INT)
err(nNon integral array size expression\n U);

add_sym_type(sym, T_ARRAY, v.value.fix);

return token;

/*============================~~~~~==~=~~===~==~~=====~~==========

* Function: declare (token, pvalue)
* Purpose: external entry for declaration parsing
* Algorithm:
* Recursive descent. Enter symbols and modify type information if

539

* we are not in execution mode. Otherwise just parse and do nothing.
* Note: a speed up of execution could be seen if functions had two
* token lists, one for executable code and one for declarations. That
* way declarations would not slow down execution.
* Inputs:
* token - enum of last unparsed token.
* pvalue - pointer to VALUE struct of last unparsed token.
* Result: TRUE if declaration is found, FALSE if not.
* Bug: Parens in declarations are not handled properly
===~~==~~===~~=~==~~=~====~====~======~~====~~~~~=~==~========~~/

int declare(token, pvalue)
LEX_TOKEN token;
VALUE *pvalue;

VALUE TYPE type

www.manaraa.com

540

VALUE val, *value();
SYM *sym, *first_arg;

switch (token)
(
case EXTERN:
case STATIC:

break;
case CHAR:

type = T CHAR;
break; -

case SHORT:
type = T SHORT;
break; -

case LONG:
type = T_LONG;
break;

case INT:
type = T_INT;
break;

case FLOAT:
type = T FLOAT;
break; -

case DOUBLE:
type = T DOUBLE;
break; -

case VOID:
type = T VOID;
break; -

default:
sym_declaring(FALSE);
return FALSE;

sym_declaring(TRUE) ;

/* Note use of do-while */
do
(

/* Parse symbol with any pointer prefix modifiers */
sym = pointer decl(type);
if (sym == NULL)
(

err("Expected symbol\n", token);
continue;

token = array_decl(sym, NULL);

if (!state.executing)
sym_allocate(sym) ;

if «int) token == '=')
(

sym declaring (FALSE) ;
expression{O, &val, 0);
sym declaring (TRUE) ;

/* Initialization */

Appendix F

if (scope level() == ° I I state.executing)
assign ~alue to memory(&val, memory(sym),

- - - get_type_desc_type(get_sym_type_desc(sym»);
token = (LEX_TOKEN) current_token();

www.manaraa.com

C Interpreter Listing 541

while «int) token ' ,') ;

if «int) token == ' (') /* function declaration * /
{

set func type(sym, get sym type(sym»;
set=:sym_type (sym, T_FuNC);-
set sym storage(sym, GLOBAL);
set-func sym(sym); /* register this sym as function symbol */
enter scope(); /* put arg declarations in new scope */
first=:arg = NULL;

for (token = lex(&val); (int) token != ')'; token
{

if (token != SYMBOL)
{

lex(&val))

err("Syntax error in arg list. Wanted a symbol, not a %s\n",
token_name(token»;

break;
}
if (first arg == NULL)

first_a;g = val.value.sym;
set sym type(val.value.sym, TINT);
token =-lex(&val); -
if «int) token != ',')

break;

if «int) token != ')')
err("Bad argument syntax\n");

token = lex(&val);

/* Note acceptable use of goto to exit this block */
if «int) token == ';')

goto exit_declare;

if (scope level() > 1)
{ -

err("Can't have nested functions\n");

/* parse all parameter declarations. */
while (declare (token, &val»

token = lex(&val);

if « int) current token () ! = '{')
err ("Expected '!' \n") ;

/* Parse function body */
statement('{', &val)i
sym_declaring(TRUE);
set sym frame offset (sym, get_frame_size(»;
lea~e_scope ()-;

else if «int) token != ';')
err(nMissing '.1 in declaration\n l1);

www.manaraa.com

542

exit declare:
syID_declaring(FALSE);
return TRUE;

}

Appendix F

/*==
* expr.c
* Author P. Darnell
* 9/86: Initial coding
* 11/86: Added pointer and array reference
* Purpose:
* To parse and compute values for C expressions. User functions and
* C runtime calls are handled here as well as the usual unary
* and binary operators
* Algorithm:

Uses recursive descent to parse expressions.
* Assignments and calls are not done unless state.executing is true.
* Bugs: Missing struct reference, ?:, and cast operators.
==/

#include <stdio.h>
#include "lex.h ll

#include IItoken_st.h"
#include "sym.h"
#include 1fcint.h"

/* Note internal function allusions */
#if _STDC_
static MEMORY *primary(LEX TOKEN *, VALUE *, TYPE_DESC **);
static MEMORY *unary_expression(LEX_TOKEN *, VALUE *, TYPE_DESC **);
static MEMORY *post_op(LEX_TOKEN *, VALUE *, MEMORY *, TYPE_DESC **);
#else
static MEMORY *primary();
static MEMORY *unary expression();
static MEMORY *post_op();
#endif

#define ARG_MAX 32
static int arg stack[ARG MAX);
static int arg=stack~ointer;

/*==
* Function: arg list
* Purpose: Gather an arg list for a call to an external, compiled function.
* Algorithm:
* Create an array of argument expressions until a closing 'l' is seen.
* Array of argument expressions until a closing ')' is seen.
* Array is filled in lexical order, and EXTERNAL ARG MAX elements will

be passed to the called function. - -
==/

static void arg_list()
(

VALUE arg;
int *ap = arg_stack;
LEX_TOKEN token;

token = lex(&arg);
if «int)token == ')')

return;

while «int) current_token() 1= ')')
(

expression (token, &arg, 0);

www.manaraa.com

C Interpreter Listing

token = LEX NULL;
if (arg.type == T DOUBLE)
{ -

*(double *) &arg_stack[arg_stack~ointerl = arg.value.flt;
arg_stack~ointer += sizeof(double) / sizeof(int);

else
arg_ stack\~ arg_ stack~ointer++ 1

if «int) current token () != ',')
break; -

arg.value.fix;

if «int) current token () != ')')
err(lIMissing ')1 in function call");

/*==
* Function: push args
* Purpose: push-argument expressions for an internal call.
* Algorithm: Keep pushing until a closing ')' is seen.

Calls itself recursively to push args in opposite order from
* their lexical appearance. This way, after all pushes are done,
* the first arg is closest to the stack pointer,
* second arg is second closest, etc.
==/

static void push_args(formal~aram, check_args)
SYM *formal~aram;
int check_args;

VALUE arg;
LEX_TOKEN token;

token = lex(&arg);
if «int) token == ')')

return;

expression (token, &arg, 0);
if (!state.executing && check_args)
(

if (!formal~aram)
warn(nToo many args for call\n");

else if (get_sym_type(formal~aram) != arg.type)
warn(nArg type mismatch\nn);

543

/* Recursive call to push arg here causes args to be pushed in reverse order.
* This puts first arg at--l off the frame poiner, 2nd arg at -2, etc.
*/
if «int)current token() == ',')
push_args(next~aram(), check_args);

/* copy actual arg to stack */
if (state.executing)

push_value(&arg);

www.manaraa.com

544 Appendix F

/*==
* Function: user arg list(fn)
* Purpose: Process arg list to internal function call.
* ==*/

static void user arg list(fn)
SYM *fn; --

VALUE arg;

push_args(first-param(fn), fn != NULL);
if ((int) current token () !=')')

err("Missing ,f, in function call");

fdefine I MEAN DEC 1
fdefine POST_INC_DEC 2

/*==
* Function: inc value(v, m, td, flags)
* Purpose: Handle pre/post auto inc/dec (++.--) operations.
* Args: pointer to VALUE struct with contents of memory location to be inc'ed
* pointer to memory location to inc
* pointer to type descriptor of memory location to inc
* flags word: I MEAN DEC = decrement, POST INC DEC = postfix ++/--
* Result: inc'ed memory and inc'ed value struct (if not post inc/dec)
==/

static void inc value(v, m, td, flags)
VALUE *v; -
MEMORY *m;
TYPE DESC *td;
int flags;

int inc;
VALUE_TYPE type;

if (exp debug)
{ -

I

printf("inc value: m=%x, ", m);
print type(NuLL, td);
print-value(v);

if (!state.executing)
{
if (!td)

err("Bad operand to '%s'\n", flags & I_MEAN_DEC ?
return;

"--" "++");

type = get type desc type(td);
inc = (type == T_PTR) ? type_desc_size(get_type_desc_next(td» 1;

if (flags & I_MEAN_DEC)
inc = -inc;

if (type == T DOUBLE)
v->value.flt +- inc;

else
v->value.fix += inc;

www.manaraa.com

C Interpreter Listing 545

if (flags & POST INC DEC)
{ - -

if (type == T DOUBLE)
v->value.flt inc;

else
v->value.fix inc;

/*======----==========---==========---============================
* Function: precedence(token)
* Purpose: return precedence of an operator.
====----===========---========----=========-----============--==/

static int precedence(token)
LEX_TOKEN token;

switch (token)
{
case ' [' :
case' (':

return 15;
case'!' :
case '_1:

return 14;
case '*':
case '/':
case '%':

return 13;
case' +' :
case' -, :

return 12;
case RSHIFT:
case LSHIFT:

return 11;
case GEO:
case LEO:
case '>':
case '<':

return 10;
case EO:
case NEO:

return 9;
case' &' :

return 8;
case ''''':

return 7;
case' I':

return 6;
case '=':

return 7;

return 0;

www.manaraa.com

546 Appendix F

/*==
* Function: unary_expression(ptoken, result, pp_type_desc)
* Purpose: Parse any legal unary expression
* Inputs: token - currently unparsed token, Null if none.
* result - pointer to value of expression result.
* ptoken - pointer to current token.
* pp type desc - pointer to pointer to the type descriptor of the
* - va~iable specified by the lhs expression.
* Returns:
* a pointer to the address of the unary expression.
* ptoken - points to first token AFTER unary expression.
==~===============/

static MEMORY *unary_expression(ptoken, result, pp_type_desc)
LEX TOKEN *ptoken;
VALUE *result;
TYPE_DESC **pp_type_desc;

MEMORY *lhs;
VALUE v;
LEX_TOKEN token;

if (exp debug)
printf("In unary_expression: 1st token

switch (*ptoken)
{

case SYMBOL:

'%s'\n", token_name(*ptoken»;

return primary(ptoken, result, pp_type_desc);

case CONSTANT:
return primary(ptoken, result, pp_type_desc);
break;

case BUILTIN FUNCTION:
return primary(ptoken, result, pp_type_desc);

case ' *, :
*ptoken = lex (result) ;
Ihs = unary_expression(ptoken, result, pp_type_desc);
*pp_type_desc = get_type_desc_next(*pp_type_desc);
if (exp debug)

printf ("pointer ref (%x) \n", Ihs, result->value. fix) ;
lhs = result->value.mptr;
assign~emory_to_value(result, lhs, get_type_desc_type(*pp_type_desc»;
return lhsi

case' &' :
*ptoken = lex(result);
lhs = unary_expression(ptoken, result, pp_type_desc);
result->value.mptr = lhs;
result->type T_PTR;
return NULL;

case SIZEOF:
*ptoken = lex(result);
unary_expression (ptoken, result, pp_type_desc);
result->type = TINT;
result->value.fi~ = type_desc_size(*pp_type_desc);
return NULL;

www.manaraa.com

C Interpreter Listing

case '+':
*ptoken = lex(result);
return unary_expression(ptoken, result, pp_type_desc);

case'!' :
*ptoken = lex(result);
unary_expression (ptoken, result, pp_type_desc);
if (result->type -- T_INT)

result->value.fix = !result->value.fix;
else

err ("Non integral operand to '!' \n") ;
return NULL;

case ,_':
*ptoken = lex(result);
unary_expression (ptoken, result, pp_type_desc);
if (result->type == TINT)

result->value.fix =--result->value.fix;
else

err("Non integer operand to '-'\n");
return NULL;

case '-':
*ptoken = lex(result);
unary expression(ptoken, result, pp type desc);
if (result->type == TINT) --

result->value.fix --result->value.fix;
else

result->value.flt
return NULL;

-result->value.flt;

case INCREMENT: /* prefix ++ */
*ptoken = lex(result);
lhs = primary(ptoken, result, pp type desc);
inc value(result, lhs, *pp type desc,-O);
return lhs; - -

case DECREMENT: /* prefix -- */
*ptoken = lex(result);
lhs = primary(ptoken, result, pp type desc);
inc value(result, lhs, *pp type desc,-I MEAN DEC);
return lhs; - - --

case')' :
return Ihs;

case' (':
expression (0, result, 0);
if «int)current token() != 'I')

err("Unmatched-paren's\n IJ);

break;

default:
return NULL;

*ptoken = lex(&v);
return lhs;

547

www.manaraa.com

548 Appendix F

/*======-=======---=---=--=----===-===--=====--==--=====---=========
* Function:post ope ptoken, value, address, ptype)
* Purpose: Handle post fix operators like "[1", "()II, "++", " __ II
* Args: ptoken - pointer to current token,
* value - pointer to result value
* address - pointer to user memory
* ptype - pointer to type pointer
* Result: memory address of expression result
-=-===----=======--========-=--===--===-===--==========-=========/

static MEMORY *post op(ptoken, value, address, ptype)
LEX TOKEN *ptoken;
VALUE *value;
MEMORY *address;
TYPE_DESC **ptype;

int old_arg_stack-pointer;
Sni *psym;
VALUE v;
VALUE_TYPE type;

if (exp debug)
printf(nIn post op: n);

for (;; *ptoken .-lex(&v»
{
if (exp debug)

printf ("post op looks at: ' %s' \nn, token_name (*ptoken)) ;
switch (*Ptoken)
{
case INCREMENT: /* post-fix ++ */

inc value(value, address, *ptype, POST_INC_DEC);
continue;

case DECREMENT: /* post-fix -- */
inc value(value, address, *ptype, POST_INC_DEC
continue;

case' (': /* function call */
old_arg_stack-pointer get_stack-pointer();
if (value->type != T FUNC && value->type != T FUNC PTR)

{ err("Illegal function call\n"); -
return;

psym - value->value.sym;
user arg list(psym);
value->type - get sym type(psym);
if (state.executing) -

user call(psym, value);
if (exil debug)
{ -

printf("fn return val is:");
print value(value);

}
set_stack-pointer(old_arg_stack-pointer);
continue;

case ' [' : /* array reference */
type = get type desc type(*ptype);
/* Need extra memory-dereference for subscripted pointers */
if (type .= T PTR)
{ -

www.manaraa.com

C Interpr~ter Listing

I

assign memory to value(value, address, T_PTR);
address = value->value.mptr;

549

else if (type !- T ARRAY)
err("Need pointer or array base for subscript expression.\n");

expression (0, value, 0);
if (value->type != TINT)

err("Non-integral subscript expression\n");
if «int)current tokenO != 'l')

err("Missing 'f'");
*ptype = get type desc next(*ptype);
type = get_type_desc_tYPe(*ptype);
if (exp_debug)

printf("array ref (%x) [%dl\n", address, value->value.fix);
address +- value->value.fix * type desc size(*ptype);
assign_memory_to_value(value, address, type);
continue;

default:
if (exp debug)

printf("leaving post_op\n");
return address;

/*===-=====-=========-====-s====_====-========-=========== __ ======
* Function: primary(ptoken, result, pp type desc)
* Purpose: Parse primary syntactic tokens, sYmbols and constants for now.
* Inputs:
* result - pointer to value of expression result.
* ptoken - pointer to first token AFTER primary expression.
* pp type desc - pointer to the data type descriptor of the
* - variable specified by the lhs expression.
* Returns: a pointer to the memory location represented by the
* expression.
==--===---------==----=---==----==----=--=-==--===--==-=--======/

static MEMORY *primary(ptoken, result, pp_type_desc)
LEX TOKEN *ptoken;
VALUE *result;
TYPE_DESC **pp_type_desc;

MEMORY *address;
VALUE TYPE type;
int old_arg_stack-pointer;
int *ap; ,
BUILTIN_PTR pbuiltin;
FUNC_PTR pfunc;

if (exp_debug)
printf("In primary: 1st token

switch (*ptoken)
{
case BUILTIN FUNCTION:

'%s'\n", token_name(*ptoken»;

pbuiltin =-result->value.builtin-ptr;
if «int) lex (result) != 'I')

break;
1* Allow for nested calls by using current stack base *1
ap = &arg_stack[arg_stack-pointerl;
old_arg_stack-pointer - arg_stack-pointer;

www.manaraa.com

550

arg list ();
if (exp debug)
{ -

int ai

printf("Calling %s(",

Appendix F

get builtin func name(pbuiltin»;
for (a - arg_stack~ointer - old_arg_stack-pointer; a; a--)

printf("%x,", apia)~;
printf(H)\n");

arg_stack-pointer = old_arg_stack-pointer;
if (!state.executing)

break;
pfunc = get_builtin_func-ptr(pbuiltin);
if (result->type == T DOUBLE)

result->value.flt =-(*(double (*) (» pfunc) (

else

ap[O), ap[l), ap(2), ap(3), ap(4), ap(5), ap(6), ap(7),
apia), ap(9), ap[lO), ap[ll), ap(12);

result->value.fix = (* (int (*) (» pfunc) (

break;

case SYMBOL:

ap[O), ap[l), ap(2), ap(3), ap(4), ap(5), ap(6), ap(7),
apia), ap(9), ap[lO), ap[ll), ap(12);

*pp type desc = get sym type desc(result->value.sym);
type - get type dese type (*pp type desc);
if (type =;; T FUNC) - --

result->type T FUNC;
else -

{
address memory(result->value.sym);
assign_memory_to_value(result, address, type);

break;

case CONSTANT:
break;

default:
return NULL;

*ptoken = lex(result);
address = post op(ptoken, result, address, pp_type_desc);
if (exp debug)-

printf(Hleaving primary\n H);
return address;

/*=-=====--====--======-====================================-=====
* Function: expression(token, result, last-precedence)
* Purpose: Parse legal C expressions.
* Algorithm:
* If precedence of current operator is greater or equal to
* last-precedence parse current operation and return.
* Otherwise recursively call expression to look for more operations
* at this precedence.
* Inputs:
* token - current token value (nil means get a new token)

www.manaraa.com

C Interpreter Listing 551

* result - pointer to value struct of expression result
* last-precedence - value of precedence of last operator seen
* Result: TRUE if legal expression, FALSE if not *=-=-----==---==-----=-=----==

int expression(token, result, last-precedence)
LEX_TOKEN token;
VALUE *result;

VALUE rvalue;
MEMORY *address = NULL;
TYPE DESC *p type desc - NULL;
int old_arg_stack~ointer;
int a;
int this-precedence;

if (token -- LEX NULL)
token = lex(result);

address = unary expression(&token, result, &p_type_desc);
if (exp debug) -

printf("In expression (prec %d): ", last-precedence);

for (;; token - current token())
{ -

if (exp debug)
printf(" exp looks at %s\n ", token name(token));

this-precedence - precedence(token);
switch (token)
{

case '+':
case 1_':
case '*':
case'I':
case '&':
case'I':
case ''''':
case '>':
case '<':
case RSHIFT:
case LSHIFT:
case EO:
case LEO:
case GEO:
case NEO:

if (last-precedence >- this-precedence)
return;

else
expression(O, &rvalue, this-precedence);

#if DEBUG

fendif

if (exp debug)
{ -

)

printf(" operator is %s: ", token_name(token));
printf("address = "I;
print value(result);
printf(" rhs - "I;
print value(&rvalue);
printf ("\n") ;

1* If types don't agree, we must convert int side to double *1
if (rvalue.type != result->type)
{

www.manaraa.com

552

if (resu1t->type != T_DOUBLE)
{

resu1t->va1ue.f1t - resu1t->va1ue.fix;
resu1t->type T_DOUBLE;

e1se
{

rva1ue.va1ue.f1t - rva1ue.va1ue.fix;

if (resu1t->type
switch (token)
{
case '+':

resu1t->va1ue.f1t +- rva1ue.va1ue.f1t;
continue;

case I_I:

resu1t->va1ue.f1t -- rva1ue.va1ue.f1tl
continue;

case '.':
resu1t->va1ue.f1t *- rva1ue.value.fltl
continue I

case 'I':
result->value.flt /- rvalue.value.fltl
continue I

case EO:

Appendix F

result->value.fix - result->value.flt -- rvalue.value.fltl
continuel

case NEO:
result->~a1ue.fix - result->value.flt !- rvalue.value.fltl
continue;

case GEO:
result->value.fix - result->value.flt >- rvalue.value.fltl
continue I

case LEO:
result->value.fix - result->value.flt <= rvalue.value.flt;
continue I

case '>':
result->value.fix - result->value.flt > rvalue.value.fltl
continue I

case '<':

)

result->value.fix - result->value.flt < rvalue.value.fltl
continue I

else if (resu1t->type T_INT)
switch (token)
{
case '+':

result->value.fix += rvalue.value.fixi
continue I

case '_1:
result->value.fix -= rvalue.value.fixi
continue;

case '*':
result->value.fix *- rva1ue.value.fix;
continue;

case 'I':
result->value.fix /= rvalue.value.fixi
continue;

case' I':
result->value.fix 1= rvalue.value.fixi

www.manaraa.com

C Interpreter Listing 553

continue;
case '&':

result->value.fix &= rvalue.value.fix;
continue;

case ''''':
result->value.fix A= rvalue.value.fix;
continue;

case LSHIFT:
result->value.fix «- rvalue.value.fix;
continue;

case RSHIFT:
result->value.fix »- rvalue.value.fix;
continue;

case EO:
result->value.fix - result->value.fix -= rvalue.value.fix;
continue;

case NEO:
result->value.fix - result->value.fix != rvalue.value.fix;
continue;

case GEO:
result->value.fix - result->value.fix >- rvalue.value.fix;
continue;

case LEO:
result->value.fix - result->value.fix <= rvalue.value.fix;
continue;

case '>':
result->value.fix - result->value.fix > rvalue.value.fix;
continue;

case '<':
result->value.fix - result->value.fix < rvalue.value.fix;
continue;

return;

case '-':
expression (0, result, this-precedence); /* Parse RHS */
if (!p type desc)

err("Illeqal Left Hand Side to assign op\n");
else if (state.executing)

assign_value_to_memory(result, address,
get_type_desc_type(p_type_desc»;

return;

case 'I':
case' (' :
case ']':
case , ,. , .
case '\r':
case'i':
case '\n':

return;

default:
err("Unexpected token in expression: '%s'\n", token_name(token»;
return;

return;

www.manaraa.com

554

/*==
* lex.c
* Author: P. Darnell
* Initial coding: 10/86
* Purpose:
* This module reads the input stream and identifies tokens.
* Contiguous digits are recognized as numbers and contiguous
* letters are recognized as symbols.

Appendix F

* The token code is returned as an int, and related data, if any, is stored
* into the VALUE structure pointed at by the pvalue parameter to lex.
* If EOF is detected and the input stream is not stdin, it is set to stdin.
* if EOF is detected and the input stream is already stdin,
* the program exits.

/*=====-=========-==

tinclude <math.h>
lIinclude <ctype.h>
*include <stdio.h>
tinclude "token st.h"
lIinclude "lex.h"
*include "sym.h"
tinclude "cint.h"

*define MAX SYM 128
'define MAX=STR 256

extern FILE *input_stream;

typedef struct
{

char *key name;
LEX TOKEN-key value;
KEY=TABLE; -

static KEY TABLE key table!]
{"break"; BREAK}, -
{"char", CHAR},
{"continue", CONTINUE},
{"double", DOUBLE},
{"int", INT},
{"else", ELSE},
{"extern", EXTERN},
{"float", FLOAT},
{"for", FOR},
{"if~, IF},
{"list", LIST},
{"return", RETURN},
{"run", RUN},
{"short", SHORT},
{"signed", SIGNED},
{"sizeof", SIZEOF},
{"static", STATIC},
{"switch", SWITCH},
{"unsigned", UNSIGNED},
{"void", VOID},
{"while", WHILE},
{"LEX_NULL", LEX_NULL},
{"»'!, . RSHIFT} ,
{"«", I:SHIFT},

www.manaraa.com

C Interpreter Listing

{"==", EO},
{" !_n, NEQ},
{">_", GEQ},
("<=", LEQ),
{"++", INCREMENT},
("--", DECREMENT),
("Symbol", SYMBOL),
("Constant", CONSTANT),
("Builtin function", BUILTIN FUNCTION),
{NULL, (LEX TOKEN) 0), -

); -

/*==
* Function: token name(token)
* Purpose: return-pointer to string corresponding to token.
* Algorithm: Look up token in keyword spelling table. If not found,
* assume that token is single letter and make into string by putting
* char in buffer and following with a null.

555

* Note subsequent calls to this routine overwrite the single letter buffer.
* Inputs: token to convert to string
* Result: pointer to char
======================--==========---===========================/

char *token name (token)
LEX_TOKEN-token;

KEY TABLE *pkeytab;
static char token_buf[2];

for (pkeytab = key table; pkeytab->key name; pkeytab++)
if (pkeytab->key-value == token) -

return pkeytab~>key_name;

token buf[O] = (char) token;
token-buf[l] = 0;
return token_buf;

/*====-===
* Function: keyword()
* Purpose: return LEX enum of keyword or LEX NULL if not keyword.
* Algorithm: simple linear search of keyword-list.
* Inputs: name - spelling of candidate keyword
* Result:
==/

static LEX_TOKEN keyword(name)
char *namei

KEY TABLE *pkeytab;
for-(pkeytab = key table; pkeytab->key value; pkeytab++)

if (!strcmp(name~ pkeytab->key name»
return pkeytab->key_value; -

return LEX_NULL;

www.manaraa.com

556

typedef struct
I

VALUE TYPE type;
char *func name;
FUNC_PTR func-ptr;
FUNC_TABLE;

extern printf(), rand(), exit(), strcpy(), strcmp(), strcat();

Appendix F

extern double log(), loglO(), cos(), siri(), tan(), sqrt(), pow(), exp();
extern int user_malloc(), user_free(), scanf(), time(), ctime();

/* Table of external function names from C library.
* These could be external user routines as well
*/

static FUNC TABLE func table[] = I

} ;

IT DOUBLE, "cos", (FUNC PTR) cos},
IT-INT, "ctime", (FUNC PTR) ctime} ,
IT-INT, "exit", (FUNC_PTR) exit},
IT-DOUBLE, "exp" , (FUNC PTR) exp},
IT-INT, "free", (FUNC PTR) user free},
IT-DOUBLE, "log", (FuNC PTR) log},
IT-DOUBLE, "loglO" , (FuNC PTR) loglO},
IT=INT, "malloc", (FUNC_PTR) user_malloc},
IT_DOUBLE, "pow", (FUNC PTR) pow},
IT INT, "printf", (FUNC-PTR) printf},
IT-INT, "rand", (FUNC_PTR) rand},
IT-INT, "scanf", (FUNC PTR) scanf},
IT=INT, "strcat", (FUNe PTR) strcat},
IT_INT, "strcmp" , (FUNC-PTR) strcmp},
IT_INT, "strcpy", (FUNC-PTR) strcpy},
IT_DOUBLE, "sin", (FUNC=PTR) sin},
IT_DOUBLE, "sqrt", (FUNC PTR) sqrt},
IT DOUBLE, "tan", (FUNC PTR) tan},
IT-INT, "time", (FUNC_PTR) time},
IT=UNKNOWN, O}

/*==
* Function: builtin function(name, pvalue)
* Purpose: see if name is a builtin function
* Algorithm: simple linear search of function table
* Put the array index of the matched function into the value node.
* Inputs:
* name - spelling of candidate builtin function
* pvalue - pointer to VALUE struct that gets assigned if builtin is found
* Result: TRUE if name is builtin, FALSE if not.
==/

static BUILTIN_PTR builtin_function(name, pvalue)
char *namei
VALUE *pvalue;

int a = 0;

FUNe TABLE *pfunctab;
for (pfunctab = func_table; pfunctab->func-ptr; pfunctab++, a++)

if (!strcmp(name, pfunctab->func_name»
I

pvalue->type = pfunctab->type;
pvalue->value.builtin-ptr = a;
return TRUE;

www.manaraa.com

C Interpreter Listing

return FALSE;

/* Return spelling of builtin name given index into function table */
char *get builtin func name(bp)

BUILTIN=PTR bp;- -

return func_table[bpl .func_name;

/*

557

* Return function pointer of builtin given index into function table */
*/

FUNC_PTR get_builtin_func-ptr(bp)
BUILTIN_PTR bpi

return func_table[bpl .func-ptr;

/*
* local wrappers to getc/ungetc
*/

static char lex_get()
(

return getc(input_stream);

static void lex_unget(c)
int Ci

ungetc(c, input_stream);

/*==
* Function: string char(c)
* Purpose: return value of single quoted char constant
* Algorithm: check for backs lash and return proper
* Inputs: first character of char constant
* Result: int value of char constant
* Bug: Doesn't handle backs lashed octal constants
==/

static int string_char(c)
(
if (c =- '\\')

switch (lex_get(»
(

case 'n' : return '\n'i
case 't':

return' \t' ;
case' r' :

return '\r';
case 'b' :

return ' \b' ;
case If I :

return '\ff;
case 'v':

return' \v' i

case' a' :
return' \a t ;

www.manaraa.com

558 Appendix F

return 0;

/*====-==-----========-===
* Function: lexO()
* Purpose: Read input stream, and break into tokens of the C lexicon.
* Algorithm:
* Ignore extra whitespace.
* Detect numeric constants, string constants, keywords, builtin functions
* and symbols. Store the associated value or pointer in the VALUE struct
* pointed at by pvalue.
* The lex main entry is found in the module token st.c, it is there because
* lexO is called only on the initial parse. When executing, lex takes its
* tokens from a linked list of tokens that lex stored away
* on the initial parse.
* Inputs:
* pvalue - pointer to VALUE struct to be initialized with
* relevant token data
* Result: Enum of lex'ed token.
-==--==----====-==~-=====-=========-========-==================/

LEX TOKEN lexO(pvalue)
VALUE *pvalue;

VALUE *sym value;
char *Pi -
double value, scale;
LEX TOKEN kw;
char 0, c2;

next char:
c ;;; lex_get () ;

if (c == '.')
goto leading_dot;

/* lex a numeric constant
*/
if (isdigit (c))
{

int radix = 10;

/* We assume here that digits 0-9 are in consecutive ascending order.
* (like ASCII or EBCDIC)
*/

value - c - '0';
if (value == 0) /* Hex or Octal */
{

if «c = lex_get(»
{

, x'II c == 'X') /* Ox prefix means hex */

for (c = lex_get(); isxdigit(c); c = lex_get(»
{

value *= 16;
if (isdigit (c))

c -= '0' i
else
{

c = toupper(c);
c 10 + (c - 'A');

www.manaraa.com

C Interpreter Listing

else
{

value += c;

radix = 8;
lex_unget (c) ;

for (c = lex_get(); isdigit(c); c
{

value *= radix;
value += c - '0';

if (c!= '.' && c!= 'e' && c!= 'E')
{

return int constant:
pvalue~>value.fix = value;
pvalue->type = TINT;
lex_unget(c); -
return CONSTANT;

if (c=='.')
{

leading_dot:
scale = 1;
for (c = lex_get(); isdigit(c); c = lex_get(»
{

double fract_digit;

scale *=.1:
fract digit = c - '0';
fract-digit *= scale;
value-+= fract_digiti

/* Deal with exponent: e/E[+/-]<digit>* */
if (c == 'e' II c == 'E')
{

int neg_exp = FALSE;

c = lex get () ;
switch (c)
{

case ' -' :
neg exp = TRUE;

case '+':
c = lex_get () ;

case '0' :
case ' l' :
case ' 2' :
case f 3' :
case ' 4' :
case ' 5' :
case ' 6' :
case ' 7' :
case ' 8' :

559

www.manaraa.com

560

case ' 9' :
for (scale ~ 0; isdigit(c); c
{

scale *~ 10;
scale += c - '0';

value *~ pow(10.0, neg_exp ? -scale
break;

default:
err(nBadly formed float constant\nn);

pvalue->value.flt ~ value;
pvalue->type ~ T DOUBLE;
lex_unget(c); -

return CONSTANT;

else if (isalpha(c) I I c
{

p ~ sym buf;

'~')

scale) ;

while (isalpha(c) I I c
{

I I isdigit (c))

*p++ = Ci
c ~ lex_get () ;

lex unget (c) ;
*p;;; 0;
if (kw ~ keyword(sym buf»

return kWi -

if (builtin_function (sym_buf, pvalue»
return BUILTIN_FUNCTION;

pvalue->type ~ T PTR;
if (!sym_find(syro_buf, &pvalue->value.sym»
{

pvalue->value.sym ~ sym_enter(sym_buf);

return SYMBOL;

switch (c)
{

case ' /' :

Appendix F

c2 ~ lex get () ;
if (c2 ~;;; '*') /* process a comment */
{

while «c2
{

lex_get(» !~ EOF)

if (c ~~ '*' && c2
goto next char;

c ~ c2; -
if (c2 ~~ '\n')

bump_line_count() ;

, /')
/* end of comment */

err(nEnd of file before end of comment. II) ;

else
lex_unget(c2);

break;

case f \n' :

www.manaraa.com

C Interpreter Listing

case ' \r' :
bump line count();
if (state~calc mode)

break; -
case '\t':
case ' ':

goto next_char;

case ' \" :
/* Process a char constant */
pvalue->value.fix = string char(lex get(»;
if (lex getO != '\") - -

printf(nMissing trailing' in string constant\n ll);

pvalue->type = T_INT;
return CONSTANT;

case' "':
/* Process a quoted string */
c = lex get 0 ;
for (p ~ str buf; c != "" && c != EOF; c lex_getO)

*p++ = string char(c);
*p = 0; -
pvalue->value.fix = user malloc(strlen(str buf) + 1);
strcpy(pvalue->value.fix~ str_buf); -
pvalue->type = T_PTR;
return CONSTANT;

case '=':
c2 = lex get () ;
if (c2 =~ '=')

return EQ;
else

lex unget(c2);
break;

case '!':
c2 = lex get 0 ;
if (c2 =~ '=')

return NEQ;
else

lex unget (c2) ;
break;

case'>':
c2 = lex_get () ;
if (c2 == '=')

return GEQ;
else if (c2 == '>')

return RSHIFT;
else

lex unget(c2);
break;

case'<':
c2 = lex_get () ;
if (c2 == '=')

return LEQ;
else if (c2 == '<')

return LSHIFT;
else

lex_unget(c2);
break;

561

www.manaraa.com

562

case '+':
c2 - lex get () ;
if (c2 -= '+')

return INCREMENT;
else

lex unget(c2);
break;

case ,_':
c2 = lex get () ;
if (c2 == '-')

return DECREMENT;
else

lex unget (c2);
break;

case , , ':
case ' i' :
case ' [':
case '] , :
case '(' :
case 'l':
case ' (':
case ')':
case ' *':
case ' I':
case ' &':
case ''''':

break;

case EOF:
1* exits if user types EOF *1
if (input stream -- stdin)

exit (0);
input stream - next file();
goto next char; -
break; -

default:
printf (" Unknown character %d\nn, c);
break;

return (LEX_TOKEN) c;

Appendix F

www.manaraa.com

C Interpreter Listing

#include <stdio.h>
tinclude "lex~hll
#include "token_st.h"
4tinclude "sym.h tl

#include "cint.h ll

FILE *input_stream = stdin;

/* Stashs away a file name for later retrieval by * next_file()
*/

#define MAX USER FILES 20
static char-*user file[MAX USER FILES);
static int file_count = 0;-

static void stash_file (f)
char *fi

if (file_count > MAX USER FILES)
(

err("Too many files, sorry.\nll);
exit(l);

f;

static int auto_startup; /* True if we should start at main
* automatically */

/*==
* Function: call_main()
* Purpose: call user's main routine
* Algorithm:
* Set global state, and call routine called "main"
==/

void call main()
(-

SYM *sym;
VALUE value;

if (!sym find(Umain", &syrn»
(-

err("No main function\n");
return;

state. saving_taken_stream
state.executing = TRUE;
user call(sym, &value);
state. saving token stream
state.executing = FALSE;

FALSE;

TRUE;

563

www.manaraa.com

564

static void put-prompt()
{

printf(tlCint> ")i

Appendix F

/*==
* Function: next file()
* Purpose: Return the file pointer to thelnext input file.
* Algorithm:
* Return the file pointer to the next file stashed away by stash_file()
* If no files are left, use stdin, and turn on prompts.
==/

FILE *next file()
{ -

FILE *fp;

if (file count -= 0)
if (auto startup)
{ -

call main () ;
exit(O) ;

else
{

state.prompting
put-prompt () ;
return stdin;

TRUE;

fp fopen(user file[--file count], "r");
if (!fp) - -
{

printf("Can't open %s\n", user_file[file_count]);
exit(l);

return fp;

/*==
* Function: main(argc, argv)
* Purpose: first routine to be called.
* Algorithm:
* Parse command line for files and options.
* Then go into loop reading input from files (if any), then stdin.
* Look for LIST, and RUN commands, if neither, look for declaration.
* If not that either, assume that use is typeing in expression to
* be evaluated, parse it and print result.
* Inputs:
* argc - count of command line args
* argv - pointer to list of null terminated strings representing
* command line args.
==========-----==--=-===========-===============================/

main(argc, argv)
int argc;
char **argvi

www.manaraa.com

C Interpreter Listing

VALUE value;
LEX TOKEN token;
int-expression() ;

for (argv++; argc-- > 1; argv++)
if (**argv == '_f)
{

if (!strcmp(*argv, "-dlexll»
lex debug = TRUE;

else If (!strcmp(*argv, "-dexp"))
exp debug = TRUE;

else If (!strcmp(*argv, "-dstmt"))
{

stmt debug = TRUE;
state.prompting = TRUE;

else if (!strcmp(*argv, U-runn»
auto startup = TRUE;

else -
printf(IIUnknown option %3\n", *argv);

else
stash_file (*argv) ;

input stream = next file();
state~saving_token_stream TRUE;

565

for (;;) 1* loop until user types exit() or EOF
* character *1

if (state.prompting)
putyrompt () ;

token = lex(&value);
switch (token)
{
case RUN:

printf ("Calling main ... \n") ;
call main () ;
continue;

case LIST:
sym list ();
continue;

if (!declare(token, &value))
{

state.calc mode = TRUE;
state.exec~ting = TRUE;
state.saving token stream = FALSE;
expression (token, &value, 0);
state.executing = FALSE;
state. saving_taken_stream TRUE;
state.calc mode = FALSE;
if (value.type == T DOUBLE)

printf("%g\n", value.value.flt);
else if (value. type != T VOID)

printf("%d\n", value.value.fix);

www.manaraa.com

566

/*~~

* stmt.c
* Author: P. Darnell
* 10/86 Created
* Purpose: Parse and execute C statements.
~~/

#include "token_st.h"
#include "sym.h"
#include "cint.h"
#include "lex.h"

1* Check for semicolon, report error if missing */
static void check_semicolon()
{

VALUE val;

if «int) current token () !~';')
(-

err(1IMissing semicolon\n lf);

lex(&val);

static int statement level;
static char break_seen;

Appendix F

/*~~~============~======

* Function: statement (token, pvalue)
* Purpose: parse and execute C statements
* Algorithm: Uses recursive descent
* When in execution mode, little syntax checking is performed, and pointers
* to things like statement top and end of if tokens are assumed to have been
* successfully handled in the parse ph~se~
* Inputs:
* token - enum of last lex'ed token
* pvalue - pointer value of last lex'ed token
*====~~~==~~~~~=~~~~~=~~~~~==~=~=~~~~=~=~=~~==~~~~~=~=~~~~~~~~~~~*I

void statement(token, pvalue)
LEX_TOKEN token;
VALUE *pvalue;

TOKEN *statement top;
TOKEN *loop_exit;

statement level++;
if (!state.executing && state.prompting)

printf (lIs1vl %d> ", statement level);
if (token =~ LEX NULL) -

token = lex(pv~lue);
if (stmt debug)

printi(nFirst token in stmt lvl %d: %5\n",
statement_level, token_name(token»;

switch (token)
{

case' (': 1* Compound statement *1
enter scope();
while-(declare(lex(pvalue), pvalue»;
while «int) current_token() !~ , }')
{

statement«int) current_token(), pvalue);

www.manaraa.com

C Interpreter Listing

if (state. returning I I break_seen)
break;

if (stmt debug)
printf("tokens after stmt in block: %s,",

token name(current token(»);
token = lex(pvalue); -
if (stmt debug)

printf("%s\nn, token_name(token»;

leave scope () ;
break;

case IF: /* If statement */
statement_top = get_token-pc();

if (!state.executing)
(

/* initial parse */

set if else(statement top, NULL);
if «int) lex(pvalue)-!= '(')

err("Missing '(' after if\n");
expression(O, pvalue, 0);
if « int) current token () ! = ')')

err ("Missing') 7 after if\n");
statement(O, pvalue);
if (lex (pvalue) == ELSE)
(

token = lex(pvalue);
set if else(statement top, get_token-pc(»;
statement(token, pvalue);

else
(

set if else(statement top, NULL);
unlex(); -

else
(

/* Running */

skip token(); /* '(' */
expression(O, pvalue, 0);
if (pvalue->value.fix != 0)

statement(O, pvalue);
else if (get if else(statement top»
(- - -

set_token-pc(get_if_else(statement_top»;
statement(O, pvalue);

break;

case WHILE: /* While statement */
statement_top = get_token-pc();
if (!state.executing) /* initial parse */
(

loop exit = NULL;
if «int) lex (pvalue) != 'I')

err("Missing '(' after while\n");
expression (0, pvalue, 0);

567

www.manaraa.com

568

if «int) current token() != ')')
err ("Missing')" after while\n U);

statement (0, pvalue);

Appendix F

/* Lex to next token to get token after WHILE stmt */
lex (pvalue) ;
set_loop_exit(statement_top, get_token-pc(»;
unlex() ;

else
{

/ * Running * /

loop exit
while (1)
{

skip token () ;
expression (0, pvalue,
if (pvalue->value.fix

break;
statement (0, pvalue);
if (break_seen)

break;

/* '(' */
0) ;
== 0)

set token pc(statement top);
skip_token(); - /* 'while' */

break seen = FALSE;
set_token-pC(loOp_exit);

break;

case FOR: /* For statement */
statement_top = get_token-pc();
if (!state.executing) /* initial parse */
{

loop exit = NULL;
if «int) lex (pvalue) !=' (')

err(I1Missing I (' after for\n");
expression(O, pvalue, 0) i 1* init expression */
check_semicolon();
set loop test (statement top, get_token-pc(»;
expression (0, pvalue, 0); /* boolean expression */
check semicolon();
set_loop_increment(statement_top, get_token-pc(»;
expression (0, pvalue, 0); /* increment expression */
if «int) current tokenO != ')')

err ("Missing ') f after for\n");
set_loop_body(statement_top, get_token-pc(»;
statement(O, pvalue);
/* Lex to next token to get token after FOR stmt */
lex(pvalue);
set_loop_exit(statement_top, get_token-pc(»;
unlex() ;

else
{

/ * Running * /

loop exit = get loop exit (statement top);
skip-token(); - - /* '(' */
expression (0, pvalue, 0); /* init */
while (1)
{

set_token-pc(get_loop_test(statement_top»;
skip token(); /* ';' */
expression (0, pvalue, 0); /* boolean test */

www.manaraa.com

C Interpreter Listing

if (pvalue->value.fix == 0)
break;

set_token~c(get_loop_body(statement_topj);

skip token (); /* ')' */
statement (0, pvalue);
if (break seen)

break; -
set_token~c(get_loop_increment(statement_top» ;
skip token () ; / * ';' * /
expression(O, pvalue, 0); /* increment */

break seen = FALSE;
set_token~C(loop_exit);

break;
case RETURN: /* Return statement */

expression (0, pvalue, 0);
check semicolon();
if (state.executing)

state. returning = TRUE;
break;

case BREAK:
lex(pvalue);
check semicolon();
if (state.executing)

break_seen = TRUE;
break;

/* Break statement */

case LEX NULL: /* Error in token list */
err(tllnternal error in Cint, premature token list end");

case';' :
break;

/* Null statement */

default: /* Expression */

)

expression«int) current_token(), pvalue, 0);
check_semicolon();
break;

if (stmt debug)
printt"("uLeaving stmt level %d\n U , statement_level);

statement_level--;

569

www.manaraa.com

570 Appendix F

/*==
* sym.c
* Author: P. Darnell
* Initial coding: 8/86
* Purpose: Handle symbol creation and access.
=======------=======-=----===-=-=============--=-=--==--==-=/

*define SYM OWNER
*include "token st.h"
*include "sym.h"
*include "cint.h"

/* maximum scope nesting depth */
*define MAX_SCOPE_LEVEL 32

static SYM *sym head;
static SYM **local_scope_table;

static int Scope level;
static int frame=offset;

int scope level()
{ -

return Scope_level;

/* Flag to tell sym enter() if we are in a declaration section. */
static char Sym_declaring;

/*==
* Set declaration state.
=======------=======--==========----=========-----===--=========/

void sym declaring(x)
int x;-

Sym_declaring x;

/*============-=====--==-===
* Function: enter scope()
* Purpose: Increment Scope level to reflect entered scope.
* Scope level 1 is for arguments, scope level 2 and on are function
* local symbols.
* Result: Scope level incremented, and frame offset zeroed for
* entry to arg-scope or function scope. -
==/

void enter scope()
{ -

Scope level++;
if (Scope level == 1 I I Scope_level -= 2)

frame_offset = 0;

www.manaraa.com

C Interpreter Listing

typedef struct list
(

struct list *1 next;
SYM *l_object;
LIST_ELEMENT;

LIST ELEMENT *make_list(s)
SYM *s;

LIST ELEMENT *p = (LIST_ELEMENT *) malloc(sizeof(LIST_ELEMENT»;
p->l next = NULL;
p->l=object = s;
return Pi

stat.ic SYM *func sym;
void set func syID(sym)

SYM *sYm; -

1*

571

* Note that we are leaving a scope level. If we have returned to scope level
* 0, that means that we just finished a function declaration. Store the
* symbol table as a linked list off the function sym node.
*1

void leave scope()
{ -

int ai

SYM *p;
LIST ELEMENT *plist;

if (stmt debug)
printt""("Leaving scope level %d\n", Scope_level);

Scope_level--;

1*
* End of function declaration. Remember symbols scoped to this function.
*1

if (Sym declaring && Scope level == 0)
(- -

func_sym->func_descriptor.func_sym_list local_scope_table;
local_scope_table = NULL;

int get_frame_size()
(

return frame_offset;

www.manaraa.com

572

int type desc size(td)
TYPE_DESC *td;

if (td->type == T ARRAY)
return td->size-* type desc size(td->next);

return type_size(td->type); -

Appendix F

/*==
* Function: sym table (scope level)
* Purpose: * Return a pointer to the first symbol at scope level.
* Algorithm: -
* If there is no local symbol table for the current function, make one.
* Inputs: scope level - current scope level
* Result: pointer to sym table for current scope level.
==/

static SYM **sym table (scope level)
int scope_level; -

if (local scope table == NULL)
{ --

local scope table = (SYM **) calloc(sizeof(SYM), MAX_SCOPE_LEVEL);
if (local scope table == NULL)
{ --

err("Symbol table overflow\n");
exit(l);

if (scope level > 0)
return 'local scope table[scope level - 1];

return &sym_head; - -

/*==
* Function: sym allocate (sym)
* Purpose: Allocate storage in memory for a symbol.
* Algorithm:
* Keep a running count of the next available memory location in
* the static var "frame_offset" for args and frame locals. Call
* static_alloc to assign memory to globals and statics.
* Note that args are positive offsets from the frame pointer,
* locals are negative. (We grow the stack downward in memory)
* Inputs: sym - pointer to symbol to allocate
* Result:
==/

void sym allocate(sym)
SYM *sYm;

if (exp debug)
print=sym(sym, 0);

/* Actually alloc the space */
switch (Scope_level)
{

case 0: /* Global sym */
sym->sym storage = GLOBAL;
sym->sym-offset = static alloc(type desc size (&sym->sym type»;
break; - - - - -

www.manaraa.com

/*

C Interpreter Listing

case 1: /* Args */
sym->sym storage = STACK;
sym->sym=offset = frame_offset;

/* Array arguments are treated as pointers */
if (sym->sym_type.type == T_ARRAY)

sym->sym_type.type = T_PTR;

frame offset += type_desc_size(&sym->sym_type);
break;

default: /* Locals */
sym->sym storage = STACK;
frame offset -= type desc size (&sym->sym type);
sym->sym offset frame_offset; -
break; -

* Allocate storage offsets for argument list, given the first arg in the
* list.
*/

void sym arg allocate(first arg)
SYM *fIrst=arg; -

SYM *p;

frame offset = FIRST ARG OFFSET;
for (p = first arg; p; P = p->sym_next)

sym_allocate(p);

/*==
* Function: sym enter(name)
* Purpose: Enter a symbol in the symbol table.
* Algorithm:
* If we are sym declaring, enter at
* current scope~ if not declaring, assume we have a reference to an

573

* undeclared function that needs to be as scope level O. If we ever support
goto label, the label needs to be at scope level 1.

* Inputs: name - pointer to null terminated string of symbol name.
* Result: pointer to symbol entry.
==/

SYM *sym_enter(name)
char *name;

SYM *p, *q;
SYM **ptable;
int enter_level;

if (stmt debug)
printf(tlsym entering %8 at scope level %d\n", name, Scope_level);

p = (SYM *) malloc(sizeof(SYM»; -

p->sym_type.type = T_UNKNOWN;
p->sym type.next = NULL;
enter_level = Sym_declaring ? Scope_level 0;

www.manaraa.com

574

ptable = sym_table(enter_level);

if (*ptable)
{

q = *ptable;
while (q->sym_next)

q = q->sym_next;
q->sym_next = p;

else
*ptable p;

p->sym name = (char *) malloc(strlen(name) + 1);
if (p->sym name == NULL)
{ -

err (" Symbol table overflow\n");
exit(l);

strcpy(p->sym_name, name);
p->sym next = NULL;
p->func_descriptor.func_sym_list
return Pi

NULL;

Appendix F

/*==
* Function: sym find(name, psym)
* Purpose: Try-to find a symbol called "name" in the symbol table.
* Algorithm:
* Use a an array of linked list. One linked list per scope. This coule
* Be sped up by using a hash table for a symbol table, at least for the
* file level scoping, but this is an exercise left for the student.
* If we are declaring symbols, only look for the name in the current scope.
* Inputs: name - pointer to null terminated string of symbol name.
* psym - pointer to sym pointer to be filled in if name is found.
* Result: TRUE if name is found, FALSE if it isn't.
==/

int sym_find(name, psym)
char *namei
SYM **psym;

SYM *p;
int slvl;

for (slvl = Scope_level; slvl >= 0; slvl--)
{

for (p = *sym table(slvl); p; p = p->sym_next)
if (!strcmp(p->sym name, name»
{ -

}

*psym = p;
return TRUE;

if (Sym declaring)
break;

}
*psym = (SYM *) NULL;
return FALSE;

www.manaraa.com

C Interpreter Listing

/* Return C spelling of a type */
static char * type_name(type)

VALUE_TYPE type;

switch (type)
(
case T_ARRAY:

return n[],,;
case T_PTR:

return u*"i
case T_CHAR:

return "char";
case T_SHORT:

return "short";
case TINT:

retu;n tI int II;
case T VOID:

return "voidll ;

case T_FLOAT:
return "float";

case T DOUBLE:
return "double";

return "??";

/*~~

* Sym printing support routines.

575

~~~~~~~~~~~~~~~~=~===~~===~~==~~~~===~=~======~~=~~~==~==~=~~~~~/

static void print-pointer_type(td)
TYPE_DESC *td;

if (td->next)
print-pointer_type(td->next);

if (td->type !~ T ARRAY)
printf("%s", type_name(td->type»;

static void print_array_type(td)
TYPEYESC *td;

if (td->type ~~ T ARRAY)
printf("[%d]", td->size);

if (td->next)
print_array_type(td->next) ;

void print type(sym, td)
SYM *sym;
TYPE_DESC *td;

print-pointer_type(td);
if (sym)

printf("\t%s", sym->syrn name);
print_array_type(td); -

www.manaraa.com

576 Appendix F

/*==
* Function: print sym(p, indent level)
* Purpose: print out information about a symbol.
* Algorithm:
* Inputs: p - pointer to symbol entry
* indent_level - amount of indenting to print before symbol.
==/

void print sym(p, indent level)
SYM *p; - -
int indent_level;

LIST_ELEMENT *plist;
int ai
SYM *param;
VALUE TYPE t, t2;
TOKEN-*func_body;

if (p == NULL)
return;

for (a = 0; a < indent_level; a++)
printf(" fI);

t = p->sym_type.type;

if (t == T_FUNC)
{

printf(II%S %s(",
,type_name(p->func_descriptor.func_type), p->sym_name);

for (param = first-param(p); param;)
{

printf (1'%SIl, param->sym name);
param = next-param(); -
if (param != NULL)

printf(fI, II);

printf (") \n");
for (param = first-param(p); param; param next-param())

print sym(param, indent level + 1);
if (exp-debug) -

printf(1f body %x, frame size %d\n"
,p->func descriptor.func start, p->sym offset);

func body = p->func descriptor.func start; -
if (tunc body != NULL) -
{ -

if (!state.executing)
print_token_list(func_body) ;

else
printf(";\n");

else
{

print type(p, &p->sym type);
if (exp debug) -

printf("<%d+%d>", p->sym_storage, p->sym_offset);
printf(" i \n");

www.manaraa.com

C Interpreter Listing

/*==
* Function: add_sym_type(sym, type, size)
* Purpose:

577

* Add a type modifier (like pointer or array) to a symbol with an existing
* base type.
* Inputs: sym - pointer to sym entry to add type information to.
* type - type to be added
* size - size of array dimension if type is array
==/

void add_sym_type(sym, type, size)
SYM *sym;
VALUE TYPE type;
int size;

TYPE_DESC *p, *q;

p = (TYPE_DESC *) malloc(sizeof(TYPE-PESC»;
q = &sym->sym type;
*p = *q; -
q->next = p;
q->type = type;
if (type == T ARRAY)
I -

if (size <= 0)
I

err("Bad size to array declaration. If) ;
return;

q->size = size;

/*==
* Function: sym list()
* Purpose: List-all symbols in table
==/

void sym_list {)
I

/*

SYM *p;
int Si

for Is = MAX SCOPE LEVEL - 1; s >= 0; s--)
for (p = *sym tablets); p; p = p->sym_next)
print_sym(p~ s);

* Define accessor functions for SYM fields.
*/

char *get sym name(p)
SYM *p;- -

return p->sym_name;

www.manaraa.com

578

static SYM *param-ptr;

SYM *first-param(fn)
SYM *fn;

SYM **pt;
pt - fn->func descriptor.func sym list;
if (pt !- NULL) - -

param-ptr - *pt;
return param-ptr;

if (param-ptr == NULL)
return NULL;

return param-ptr = param-ptr->sym_next;

TYPE DESC *get sym type desc(p)
sThi *p; - - -

return &p->sym_type;

TYPE DESC *get type desc next(p)
TYFE_DESC *p; - -

return p->next;

VALUE_TYPE get_type_desc_type(p)
TYPE_DESC *p;

return p->type;

VALUE_TYPE get_sym_type(p)
SYM *p;

return p->sym_type.type;

void set sym type(p, t)
SYM *p; -
VALUE_TYPE t;

p->sym_type.type - t;

Appendix F

www.manaraa.com

C Interpreter Listing

void set sym frame offset(sym, frame_offset)
SYM *s"Ym; - -
int frame_offset;

int get_sym_frame_offset(sym)
SYM *sym;

return sym->sym_offset;

void set sym storage(sym, storage)
SYM *s"Ym; -
STORAGE storage;

sym->sym_storage storage;

STORAGE get_sym_storage(sym)
SYM *sym;

return sym->sym_storage;

void set func start(sym, pc)
SYM *s"Ym; -
TOKEN *pc;

sym->func_descriptor.func_start ~ pc;

TOKEN *get func start(sym)
SYM *sym; -

return sym->func_descriptor.func_start;

void set func type(sym, type)
SYM *s"Ym; -
VALUE_TYPE type;

sym->func_descriptor.func_type

VALUE_TYPE get_func_type(sym)
SYM *sym;

type;

return sym->func_descriptor.func_type;

579

www.manaraa.com

580 Appendix F

/*
* token st.c
* Author: P. Darnell
* Purpose: Manage the token stream. The token stream is a linked list of
* tokens with lex'ed values.

*
*/

#define TOKEN_OWNER
#"include 1I1ex.hn
#include "sym.h"
#include "cint.h"
#include "token st.h"
#include <stdio~h>

char *token_name();

static TOKEN *token_head;
static TOKEN *token_PC;
static TOKEN *next _token_PC;
static TOKEN *last token PC;
static TOKEN *pushed_token_PC;

static LEX_TOKEN token;

static int line count;
void bump line count()
{ --

line_count++;

/*==
* Function: err(str, a"ergl, arg2, arg3, arg4)
* Purpose: print out error message
* Inputs: str - printf format string
* argl .. 4 - 4 args to be printed by str control
==/

void err(str, argl, arg2, arg3, arg4)
char *str;
int argl, arg2, arg3, arg4;

printf(nError at line %d: II, line count);
printf(str, argl, arg2, arg3, arg4);

/*==
* Function: warn (str, argl, arg2, arg3, arg4)
* Purpose: print out warning message
* Inputs: str - printf format string
* argl .. 4 - 4 args to be printed by str control
==/

void warn (str, argl, arg2, arg3, arg4)
char *str;
int argl, arg2, arg3, arg4;

printf ("Warning at line %d: ", line count);
printf(str, argl, arg2, arg3, arg4);

www.manaraa.com

C Interpreter Listing

/*===-==
* Push current token back into lex stream, so next call to
* lex will return it.
==/

void un lex ()
{

pushed token PC = token PC;
token_PC last_token_PCI

/*==
* Function: add to token stream(token, pvalue)
* Purpose: add a lexical-token to the token stream.
* Algorithm:

581

* Token stream is a linked list of C tokens. Each function has a pointer
* to a token stream that represents the function body. It is this stream
* that gets interpreted at execution time.
* Inputs: token - the lexical token
* pvalue- pointer to the value node associated with the token.
=============-==/

void add to token stream(token, pvalue)
LEX_TOREN-token;
VALUE *pvalue;

TOKEN *p;

last token PC = token PC;
if (token ;;= RUN I I token == LIST)

return;
p = (TOKEN *) malloc(sizeof(TOKEN»;
p->tk line = line count;
p->tk-token = token;
p->tk-value = *pvalue;
p->tk-next = NULL;
if (token PC)
{ -

token PC->tk next p;
token=PC = PI

token_head = p;

/*==============================-======-============-=======-=====
* Function: skip token()
* Purpose: Skip over the current token. Used for execution mode to skip
* over uninteresting tokens.
==/

void skip token()
(-

token PC = next token PC;
token ;; token PC~>tk token;
next token PC-= token PC->tk next;
if (lex debug) - -

printf("Skipping token %s\n", token_name(token»;

www.manaraa.com

582 Appendix F

/*======--=========-==============-===============================
* Function: next token(pvalue)
* Purpose: return the next token in the token stream.
* Algorithm: next token PC holds the current pointer in the
* token list. The enumeration value of the token is always returned,
* and the VALUE struct is assigned to pvalue if necessary.
* Inputs: pvalue - pointer to VALUE struct to receive value part of token.
* Result: the next token in the stream, LEX NULL if none.
==~=====================/

LEX TOKEN next token(pvalue)
VALUE *pvalue;

LEX TOKEN token;
if (next token PC == NULL)
(--

err("Missing ')'\n");
state.executing = FALSE;
return LEX_NULL;

token PC = next token PC;
token-= token PC->tk token;
line count = token PC->tk line;

/* see-if we need to-copy value part of token */
switch (token)
(
case CONSTANT:
case SYMBOL:
case IF:
case WHILE:
case FOR:
case BUILTIN FUNCTION:

*pvalue = token_PC->tk_value;

next token PC
retu;n token;

/*==
* Return current token value
==/

LEX TOKEN current token()
(- -

return token;

/*==
* Print a string the way it was typed in.
==/

static void print_string(s)
char *s;

char c;

putchar('II')i
while (c = *s)

switch (*s++)
(
case' \f' :

www.manaraa.com

C Interpreter Listing

putchar('\\');
put char (' f') ;
break;

case '\n':
putchar('\\');
putchar('n') ;
break;

case f \t' :
putchar('\\');
putchar('t');
break;

case '\b' :
putchar('\\');
putchar ('b');
break;

default:
putchar(c);

putchar{'''')i

/*==
* Print the value of a VALUE struct.
==/

void print_value(p)
VALUE *p;

if (p->type == TINT)
printf("%d It, p->value.fix);

else if (p->type == T PTR)
print string(p->val~e.Ptr);

else if-(p->type == T DOUBLE)
printf("%i1g ", p->value.flt);

else if (p->type == T FUNC)
printf("func"); -

else
printf("??");

static void print_newline (indent_level)
{

int a;
printf("\n");
for (a = 0; a < indent_level; a++)

printf (" ");

583

www.manaraa.com

584 Appendix F

/*======================-=--==-==============--===================
* Function: print token list(p)
* Purpose: print token list for LIST command.
* Algorithm: Follow links in token list, printing each token
* in order. Try to be clever about when to print new lines and
* how far to indent. This needs some more smarts, especially
* for "for" loops.
* Inputs: p - pointer to token list head.
======-================--===================--===============-==/

void print token list(p)
TOKEN *p; -

int indent level = 0;
int suppress_newline = 0;

for (; p; p = p->tk next)
switch (p->tk token)
{ -
case SYMBOL:

printf("%s ", get_sym_name(p->tk_value.value.sym»;
break;

case CONSTANT:
print value(&p->tk value);
break; -

case BUILTIN FUNCTION:
printf("%s-", get builtin func name (p->tk value.value.sym»;
break; - - - -

case FOR:
suppress newline = 2;

default: -
if «int) p->tk token 'I')
{ -

if (indent level > 0)
print newline(indent level);

indent_level++; -

printf("%s ", token name(p->tk token»;
if «int) p->tk token == ';') -
{ -

if (suppress newline)
suppress newline--;

else -
{

if «int) p->tk next->tk token 'I')
indent level-~; -

print_newline(indent_level);

else if (p->tk_token == (LEX_TOKEN) 'I')
{

if (indent_level == 0)
{

printf("\n\n");
return;

1
if (p->tk_next->tk_token (LEX_TOKEN) 'I')

www.manaraa.com

C Interpreter Listing

indent level--;
print newline(indent level); - -

/*==============--===
* Define accessor functions for token stream objects.
==----==--===---=----=======================-===============/

void set_token-pc(new-pc)
TOKEN *new -pc;

next token PC = token PC - new-pc;
token = LEX_NULL;

TOKEN *get_token-pc()
{

return token_PC;

TOKEN *get_next_token-pc()
{

return next_token_PC;

TOKEN *token_list_head()
{

return token_head;

/*===-------------==---=----==-=--=======-=-======================
* Debug routine to print current token */
===---==--=-==-=-==---==----=--~-=----=--==-=--====-===========/

void ptoken ()
(

printf("current token is %s\n", token_name(token_PC->tk_token»;

/*==-=--==
* Function: lex (pvalue)
* Purpose: return the next lexical token.
* Algorithm:

585

* If there is a pushed token, return it and reset pushed token PC.
* If we are using the token stream, get the previously saved away token
* otherwise call lexO to lexically analyse input files.
* If we are in saving token state, add the token to the saved token stream.
* from the token stream.
* Inputs:
* pvalue - pointer to VALUE struct to be filled in by lex'ed item.
* Result:
==/

LEX TOKEN lex(pvalue)
VALUE *pvalue;

if (pushed token PC)
{ --

token_PC = pushed_token_PC;

www.manaraa.com

586

token - pushed token PC->tk token;
pushed_token_PC = NULL; -

else if (state.using token stream)
token next_token(pvalue);

else
(

I

token = lexO{pvalue);
if (state.saving token stream)

add_to_token_stream(token, pvalue);

tif DEBUG
if (lex debug)
(-

printf("token %s ", token name(token»;
if (token == SYMBOL && pvalue->value.sym)

print sym(pvalue->value.sym, 0);
else if-(token == CONSTANT)

print value(pvalue);
printf ("\n");

I
tendif

return token;

int frame-9ointer - 0;

Appendix F

/*-~==============--=========--========-==============-=-=======-=
* Function: user call (fn, return val)
* Purpose: Call an internal interpreted function.
* Algorithm:
* Save the current frame pointer, set the frame pointer to top of stack,
* allocate a new top of stack past local function variables.
* Start execution of function by setting the token stream pointer
* to the token stream stored away for this function.
* Assume that all args have been pushed.
* Inputs:
* fn - pointer to symbol entry for the function.
* return val - pointer to VALUE struct to receive function result
-==-============--==/

void user call(fn, return val)
SYM *fn; -
VALUE *return_val;

char save return state;
TOKEN *save_token-9c;
int old_frame-90inter;

if (stmt debug)
(-

I

printf("calling %s\n", get_sym_name(fn»;
print_sym(fn, 01;

if (! fn II (get_sym_type (fn) != T FUNC
&& (state.executing II get_sym_type(fn) != T_UNKNOWN»)

err("Bad function name '%s'\n", get_sym_name(fn»;
return;

}
if (!state.executing)

www.manaraa.com

C Interpreter Listing

return;
if (state.using_token stream

save_token-pc NULL;
else

save_token-pc next_token_PC;
state.using_token_stream = TRUE;

FALSE)

save return state = state. returning;
old_frame-pointer = frame-pointer;
frame-pointer = get_stack-pointer();
set_stack-pointer(frame-pointer + get_sym_frame_offset(fn»;
set_token-pc(get_func_start(fn»;
statement (0, return val);
if (stmt_debug) -

printf("returned from call\n");
frame-pointer = old_frame-pointer;
state. returning = save_return_statei
if (save_token-pc == NULL)

state.using token stream = FALSE;
else --

set_token-pc(save_token-pc) ;

/*==
* Accessor functions for token stream related VALUE fields
==/

TOKEN *get loop exit(p)
TOKEN *p; -

return p->tk_value.value.loop_descriptor.loop_exit;

void set_loop_exit(p, q)
TOKEN *p, *q;

p->tk_value.value.loop_descriptor.loop_exit q;

TOKEN *get if exit(p)
TOKEN *p; -

return p->tk_value.value.if_descriptor.if_exit;

void set_if_exit(p, q)
TOKEN *p, *q;

p->tk_value.value.if_descriptor.if_exit q;

TOKEN *get_if_else(p)
TOKEN *p;

return p->tk_value.value.if_descriptor.if_else;

587

www.manaraa.com

588

void set_if_else(p, q)
TOKEN *p, *q;

p->tk_value.value.if_descriptor.if_else = q;

TOKEN *get loop test(p)
TOKEN *p; -

return p->tk_value.value.loop_descriptor.loop_test;

TOKEN *get loop body(p)
TOKEN *p; -

return p->tk_value.value.loop_descriptor.loop_body;

TOKEN *get loop increment(p)
TOKEN *p; -

Appendix F

return p->tk_value.value.loop_descriptor.loop_increment;

void set loop body(p, q)
TOKEN *p; -
TOKEN *q;

p->tk_value.value.loop_descriptor.loop_body q;

void set loop test(p, q)
TOKEN *p; -
TOKEN *q;

p->tk_value.value.loop_descriptor.loop_test q;

void set loop increment(p, q)
TOKEN *p; -
TOKEN *q;

p->tk_value.value.loop_descriptor.loop_increment q;

www.manaraa.com

C Interpreter Listing

/*
* memory.c
* Author: P. Darnell
* Purpose: Manage access to variable storage space

*/
ilinclude "lex.h"
#include "syrn.h"
#include "cint.h"
ilinclude "token st.h"
ilinclude <stdio~h>

/* define number of memory bytes for stack and global variables */
ildefine MAX_MEMORY_ADDRESS 16383

static MEMORY Memory [MAX MEMORY ADDRESS];
extern int frame-pointer; -/* defined in token_st.c */
/* Stack starts at high memory and works down */
static int stack-pointer = MAX_MEMORY_ADDRESS;

/* Return a pointer to the memory location referenced by the symbol.

589

* If we are not executing, then stack variables do not refer to a meaningful
* place.
*/

MEMORY *memory(sym)
SYM *sym;

unsigned memory index;
if (get sym sto;age(sym) == STACK)

memory_index frame-pointer + get_sym_frame_offset(sym);
else

memory_index

if (exp debug)
{ -

printf("var at %x: If, memory_index);
print_sym(sym, 0);

if (memory_index > MAX_MEMORY_ADDRESS)
{

if (state.executing)
err("Attempt to address past top of memory (Ox%X)\n", memory_index);

memory_index = 0;

return Memory + memory_index;

void assign memory to value(v, m, type)
VALUE *v;- --
MEMORY *m;
VALUE TYPE type;

if «unsigned) (m - Memory) > MAX_MEMORY_ADDRESS && state.executing)
{

err ("Memory address out of range (Ox%X) \n", m - Memory);
return;

www.manaraa.com

590 Appendix F

/* m += (int) Memory; */
if (type != T_DOUBLE && type != T_FLOAT)
(

switch (type)
(

/* Array type means use address of array, not contents */
case T ARRAY:

v->value.mptr = mi
break;

case T_FUNC:
case T_PTR:

v->value.mptr * (MEMORY **) m;
break;

case T CHAR:
v->value.fix *(char *) m;
break;

case T_SHORT:
v->value.fix *(short *) m;
break;

case T LONG:
v->value.fix *(long *) m;
break;

case TINT:
v->value.fix *(int *) mi

break;
case T_FLOAT:

v->value.fix
break;

case T_DOUBLE:

*(float *) m;

v->value.fix = *(double *) m;
break;

default:
err("Unknown type in assign m to v(%d)\n", type);

v->type

else
(

switch (type)
(
case T_CHAR:

v->value.flt
break;

case T SHORT:
v->value. f It
break;

case T LONG:
v->value.flt
break;

case T_INT:
v->value.flt
break;

case T FLOAT:
v->value.flt
break;

case T':"DOUBLE:
v->value.flt
break;

default:

*(char *) mi

*(short *) m;

* (long *) m;

*(int *) m;

*(float *) m;

*(double *) m;

err("Unknown type in assign m to v(%d) \n", type);

www.manaraa.com

C Interpreter Listing

v->type

if (exp_debug)
{

printf ("asg mem (%x) type
print_value (v);

%d to value:", m - Memory, type);

/* Assign a value to memory pointed to by m, of type type. */
void assign value to mernory(v, ro, type)

VALUE *v;- --

(

MEMORY *m;
VALUE_TYPE type;

/* Following cast to unsigned causes negative values of (m-Memory)
* to be > MAX MEMORY ADDRESS, thus capturing upper and lower bounds
* check in one compa;e.
*/
if «unsigned) (m - Memory) > MAX_MEMORY_ADDRESS && state.executing)
(

err ("Memory address out of range (Ox%X) \n", m - Memory);
return;

/* m +~ (int) Memory; */
if (v->type !~ T DOUBLE)

switch (type) -
{
case T_FUNC:
case T PTR:

* (MEMORY **) m v->value.mptr;
break;

case T_CHAR:
*(char *) m
break;

case T_SHORT:

v->value.fix;

*(short *) m v->value.fix;
break;

case T_LONG:
*(long *) m v->value.fix;
break;

case TINT:
* (int *) m v->value.fixi
break;

case T_FLOAT:
* (float *) m
break;

case T DOUBLE:
* (double *) m
break;

default:

v->value.fix;

v->value.fix;

err("Unknown type in assign v to m(%d) \n", type);

else
switch (type)
(
case T_CHAR:

* (char *) m
break;

case T_SHORT:

v->value.flti

591

www.manaraa.com

592 Appendix F

*(short *) m v->value.flt;
break;

case T LONG:
*(long *) m v->value.flt;
break;

case TINT:
* (int *) m v->value.flt;
break;

case T FLOAT:
*(float *) m v->value.flt;
break;

case T DOUBLE:
* (double *) m
break;

default:

v->value.flt;

err ("Unknown type in assign v to m(%d) \n", type);

if (exp debug)
{ -

printf ("asg value to mem (%x) type
print_value(v);

/* Return the size of a type */
int type_size(type)

VALUE_TYPE type;

switch (type)
(
case T FUNC:
case T-PTR:

return sizeof(char *);
case T CHAR:

return sizeof(char);
case T SHORT:

return sizeof(short);
case T LONG:

return sizeof(long);
case TINT:

return sizeof(int);
case T FLOAT:

return sizeof(float);
case T DOUBLE:

return sizeof(double);
case T VOID:

return Q;

default:

%d:", m - Memory, type);

err("Unknown type (%d) in type_size\n", type);

www.manaraa.com

C Interpreter Listing

push value(v)
VALUE *v;

stack-pointer -= type_size(v->type);
if (exp debug)
(-

I

printf("pushing arg at mem address %x: .. , stack-pointer);
print value (v) ;

assign_value_to_memory(v, Memory + stack-pointer, v->type);

int get_stack-pointer()
(

return stack-pointer;

void set_stack-pointer(new_sp)
int new_sp;

stack-pointer - new_sp;

static int global offset;
int static alloc(size)
(-

int 0;
° = global offset;
global offset +- size;
return 0;

1* Very simple memory free algorithm *1
void user free(m)

MEMORY *m;

1* Very simple memory allocate algorithm *1
MEMORY *user malloc(size)
(-

return Memory + static_alloc(size);

593

www.manaraa.com

Appendix G

ASCII Codes

oct dec hex char oct dec hex char

0 0 0 NUL A@ 31 25 19 EM Ay
1 1 SOH AA 32 26 1A SUB AZ
2 2 2 STX AB 33 27 1B ESC A[
3 3 3 ETX AC 34 28 1C FS AI
4 4 4 EQT AD 35 29 1D GS A]
5 5 5 ENQ AF 36 30 IE RS AA
6 6 6 ACK AF 37 31 IF US A

-
7 7 7 BEL AG 40 32 20 SPACE
10 8 8 BS AH 41 33 21
11 9 9 TAB AI 42 34 22
12 10 A LF AJ 43 35 23 #
13 11 B VT AK 44 36 24 $
14 12 C FF AL 45 37 25 %
15 13 D VR AM 46 38 26 &
16 14 E SO AN 47 39 27
17 15 F SI AO 50 40 28
20 16 10 DLE Ap 51 41 29
21 17 11 DC1 AQ 52 42 2A *
22 18 12 DC2 AR 53 43 2B +
23 19 13 DC3 AS 54 44 2C
24 20 14 DC4 AT 55 45 2D
25 21 15 NAK AU 56 46 2E
26 22 16 SYN AV 57 47 2F /
27 23 17 ETB AW 60 48 30 0
30 24 18 CAN AX 61 49 31

www.manaraa.com

Appendix G

oct dec hex char

62 50
63 51
64 52
65 53
66 54
67 55
70 56
71 57
n 58
73 59
74 60
75 61
76 62
77 63
100 64
101 65
102 66
103 67
104 68
105 69
106 70
107 71
110 n
111 73
112 74
113 75
114 76
115 77
116 78
117 79
120 80
121 81
122 82
123 83
124 84
125 85
126 86
127 87
130 88

32 2
33 3
34 4
35 5
36 6
37 7
38 8
39 9
3A
3B
3C <
3D =
3E >
3F ?
40 @
41 A

42 B
43 C
44 D
45 E

46 F

47 G
48 H
49 I
4A J

4B K
4C L
4D M
4E N
4F 0
50 P
51 Q
52 R
53 S
54 T

55 U
56 V
57 W

58 X

595

oct dec hex char

131 89 59 Y
132 90 5A Z

133 91 5B [
134 92 5C \
135 93 5D]
136 94 5E /\

137 95 5F
140 96 60
141 97 61 a
142 98 62 b
143 99 63 c
144 100 64 d

145 101 65 e
146 102 66 f
147 103 67 g

150 104 68 h

151 105 69
152 106 6A j
153 107 6B k
154 108 6C
155 109 6D m
156 110 6E n
157 111 6F 0

160 112 70 P
161 113 71 q
162 114 n r

163 115 73 s
164 116 74
165 117 75 u
166 118 76 v

167 119 77 w

170 120 78 x

171 121 79 Y
In 122 7A z
173 123 7B
174 124 7C I
175 125 7D }
176 126 7E
177 127 7F del

www.manaraa.com

Index

Symbols

decimal point, 52
structure member operator, 155,246

••. , ellipsis, 295, 429

.c filename extension, 12

.h filename extension, 13, 335

.0 filename extension, 12

!, logical negation operator, 139

!=, not equal to operator, 82,138

?:, conditional operator, 154-155

"comma operator, 136-137

; semicolon, 19
misplaced, 106
mistakenly used to end macro definitions,

318

:, bit fields, 255-260
conditional expression operator, 154-155
statement label, 113

", double quote, 31, 178, 328
surrounding filenames, 335

" single quote, 45

o
cast operator, 65, 151-152
function call, 19, 29, 290
macro call, 319
parenthesized expression, 122-123

[), array subscript operator, 155

{}
array initialization, 162
function body, 19,286
initialization of arrays, 194
initialization of nested structures, 252
initialization of structures, 246

{} compound statement, 85-88
missing braces, 87

&
address of operator, 155, 297

See also address-of operator
illegal with bit fields, 255
illegal with register variables, 229

in scanf() calls, 283
bitwise AND operator, 143, 146

&&, logical AND operator, 139

&=, bitwise AND assign operator, 151

preprocessor symbol, 34, 316
stringizing operator, 328

##, token pasting operator, 329

#Undefdrrective,408

%
conversion symbol in printf() function, 31,

444
remainder operator, 125, 126-135

% If conversion character, example of, 80

%p print specifier. See printf() function

%s format specifier, 183

+
addition operator, 125
unary plus operator, 124

++, increment operator, 96, 132
applied to pointers, 185, 187
applied to subscripts, 187
postfix, use of, 309

subtraction operator, 125
unary minus operator, 124

-, decrement operator, 132

->, structure member operator, 155,247,270

-D, macro derming option, 332

*
dereference operator, 155

See also dereference operator
multiplication operator, 20, 125

*1, end comment, 26

I, division operator, 125

1*, begin comment, 26

A, bitwise exclusive OR operator, 143, 147

A=, bitwise exclusive OR assign operator, 151

I, bitwise inclusive OR operator, 143, 146

II, logical OR operator, 139

www.manaraa.com

Index

1=, bitwise inclusive OR assign operator, 151

=, assignment operator, 20, 128
confused with equal to operator =, 83

=, assignment operator, erroneous use in
macro definitions, 321

==, equal to operator, 82, 138
confused with assignment operator =, 83

<, less than operator, 82, 138

<=, less than or equal to operator, 82, 138

«, left shift operator, 143, 144-145

«=, left shift assign operator, 151

<>, #include command, 34

>, greater than operator, 82, 138

>=, greater than or equal to operator, 82, 138

», right shift operator, 143, 144-145

»=, right shift assign operator, 151

continuation character, 33, 186, 317
escape sequence character, 33

\0, null character, 50, 178

\a, alert, 50

\b, backspace, 50

\f, form feed, 50

\n, newline, 30, 50

\r, carriage return, 50

\t, horizontal tab, 50, 107

\v, vertical tab, 50

-, bitwise complement operator, 143, 147

underscore character, 24, 523
macro names beginning with, 326

_DATE_macro, 327

FILE macro, 326, 410

LINE macro, 326, 337, 410

STDC macro, 327

TIME macro, 327

JOFBF macro, 360, 458

JOLBF macro, 360,458

JONBF macro, 360,458

A
abort signals, 427

abort() function, 467

aborting a program, 115

abs() function, 470

absolute value function,fabs(), 423
absolute values

absO function, 470
fabs() function, 423
labs() function, 470

abstract declarators, 493

abstraction, 30 I
data, 16,388
of programming problems, 382

access modes,fopen(), 348

acos() function, 420

actual arguments, 19,281,282

Ada programming language, 388

addition operator +,125

additive operators, 125

address of operator &, 70, 155,297
illegal with bit fields, 255
illegal with register variables, 229
in scanf() calls, 283

addresses
finding, 70--71
mapping variables to fixed, 232
of variables, 21
passing as arguments, 283
writing, 71

aggregate types, 39

Aho,382

alert, escape character sequence \a, 50

algorithms, 10
choosing efficient, 384-388
for encoding files, 166
sorting, 175-178

bubble sort, 175

alignment
natural, 254
of structure members, 253-255, 256

allocation
See also memory allocation
of enum variables, 67
of memory

597

www.manaraa.com

598

calloc() function, 465
[ree() function, 466
malloc() function, 466
realloc() function, 466

allusions, 225-241, 284, 288
See also function allusions
function, syntax of, 289

alpha test, 400

alphabetic characters, testing for, 412

alphabets, for different languages, 413

American National Standards Institute. See
ANSI Standard

American Standard Code for Infonnation
Interchange. See ASCII character set

ampersand. See address-of operator

analysis, of perfonnance, 401

AND operator
bitwise &,143,146
logical &&, 139-157

ANSI features
const storage-class modifier, 230
flexible formatting of preprocessor lines,

317
noat and long double constants, 54
function prototypes, 293
generic pointers, 239
initialization of arrays, 164
initializing unions, 275
long double type, 52
signed qualifier, 44
string concatenation, 186
string producer, 328
struct and union name spaces, 252, 255
the #error directive, 337
the #pragma directive, 338
token pasting, 329
trigraph sequences, 51
unsigned constants, 49
unsigned conversions, 59
using a macro name in its own defmition

324 '
volatile storage-class modifier, 232

ANSI Standard, 6-7
_STDC _ macro, 327
differences from K&R standard, 510-521
goals of, 7
syntax of, 489-505

arc cosine, acos() function, 420

arc sine, asin() function, 420

arc tangent, atan() function, 420

argc, argument to mainO, 309

argument expression lists, 497

arguments, 19
actual, 19, 281, 282
command line, 309
declaration of, 19,285-288

ANSI style, 286
default type of, 286
fonnal, 19,281,282

assigning values to, 249
implicit conversions of, 285, 292
maximum number per function, 507
multidimensional arrays, 198-200
namesof,I9
pass by reference, 260, 281, 282
pass by value, 260, 281, 282, 283
passing, 281-283

arrays as, 173-175,285,286
arrays vs. structures, 258
by reference, 281-283
by value, 281-283
functions as, 285, 286
pointers to functions, 302
structures, 260-261
structures vs. arrays, 258

passing arrays as, 173,285,286
passing functions as, 285, 286
passing pointers as, 168-170
passing structures as, 260-261
pointer, 231
scope of, 223
to macros, 319

binding of, 326
no type checking for, 321-323
side effects in, 325

variable number of, 295, 429-430
!

argv, argument to mainO, 309

arithmetic functions, integer, 470

arithmetic operators, binary, 125-128

arithmetic types, 38

array elements
initial, 159
referencing, 159-160

array names
interpretation of, 171
naked, 172

array subscript operator (], 155

arrays, 1-8, 158-213,214-241
and pointers, 171-172
base address of, 172

Index

www.manaraa.com

Index

bounds-checking of, 174, 176
declaring, 159-161
definition of, 158
fmding number of elements in, 175
finding the size of, 162, 174
initial element of, 159
initializing, 162-164

memset() function, 472
interpreted as pointers, 171
maximum size of, 507
memory allocation of, 161, 176
multidimensional, 194-20 I

example of, 200-201
initializing, 196--198
passing as function arguments, 198-200

of chars. See strings
of pointers, 201-205, 206
of strings, 202
of structures, 244, 247-250
passing as function arguments, 173-175,

285,286
vs. passing structures, 258

storage in memory, 161-162
subscripting, 159-160

ASCII character set, 45, 46,101,166,413

ASCII codes, table of, 594

asctime() function, 485

asin() function, 420

assembler, 2

assembly language, 2

assert.h header file, 407, 410

assert() function, 410-411

assignment conversions, 56

assignment operator =, 20, 128
confused with equal to operator ==, 83
erroneous use in macro definitions, 321

assignment operators, 128-132,500
bitwise, 151

assignment statements, 20, 25-26

assignment suppression flag, in scanfO
function, 455

assignments
of strings, 180-182, 183

associativity, of operators, 120, 121-124

asterisk, dereference operator. See dereference
operator

atan() function, 420

atan2 () function, 419

atexit() function, 467

atof() function, 310, 462

atoi() function, 310, 462

atol() function, 462

599

auto storage class specifier, 216, 234, 235

automatic conversions. See implicit
conversions

automatic duration, 215
and recursion, 307
initialization of variables with, 216--218

automatic product building, 395-398

B
B programming language, 5

backslash character \, 33

backspace, escape character sequence \b, 50

base address, of arrays, 172

base type, of bit fields, 256

batch programs, 377

beta test, 400

binary arithmetic operators, 125-128

Binary Coded Decimal (BCD) format, 280

binary format, 343-344

binary numbers, 1
table of, 146

binary operators, 57, 82, 499

binary trees, storing symbol tables as, 385

binders. See linkers

binding
of macro arguments, 326
of operators. See associativity

bit, defmition of, 1

bit fields, 255-260
base type of, 256
memory allocation of, 256
portability of, 259
syntax for declaring, 256, 492

bit manipulation operators, 143-151

www.manaraa.com

600

bitwise
AND assign operator &=, 151
assignment operators, 151
exclusive OR assign operator, 151
inclusive OR assign operator, 151
logical operators, 145-157

blank character. See space character

block I/O, 355-362

block of statements. See compound statements

block scope, 219-221, 222

blocks, 345

body
function, 18-20,286

. macro, 317

Boole, George, 82

Boolean data types, 82

boolean expressions. See comparison
expressions

bottlenecks, 40 1

bounds checking of arrays, 174, 176

braces. See compound statements

break statement, 111-113
used to exit a switch statement, 91-94

Brodie, James, 6

Brooks, Fredrick P., 389

Brooks' law, 390

bsearch() function, 469

bubble sort algorithm, 175,300

buffered I/O, 341, 344-345
block buffering, 345
line buffering, 345

buffers, 344
flushing, 432
keyboard,97
setting default parameters, setvbuf()

function, 457
setting size of, setbuf() function, 457

bug, origin of term, 397

bug alerts
binding of macro arguments, 326
comparing floating-point values, 138
confusing = with ==, 83
confusing typedef with #define, 69
dual meanings of static, 224

ending a macro defmition with a
semicolon, 318

integer division and remainder, 129
misplaced semicolons, 106
missing braces, 87
no nested comments, 28
off-by-one errors, 104
opening a file, 350

Index

passing structures vs. passing arrays, 258
referencing elements in a multidimensional

array, 198
side effects, 134

in macro arguments, 325
in relational expressions, 142

space between left parenthesis and macro
name,322

the dangling else, 89
using = to define a macro, 321
walking of the end of an array, 176

build files, 395

built-in macros, 326-329

byte, size of, 41

c
C programming language

history of, 5-6
nature of, 7-8
standardization of. See ANSI Standard
tenet of, 8

C Reference Manual. See K&R standard

C++ programming language, 230, 293

calculator program, 110-111

call by reference, 281-283

call by value, 281-283

calloc() function, 237, 465

calls, function. See function calls

carriage return, escape character sequence \1",
50

case keyword, 90

case label, 90
maximum number of, 507

case mapping functions, runtime library, 411

case-sensitivity, 22

cast expressions, 65, 498
confusion with unions, 273

cast operator 0, 151-152

www.manaraa.com

Index

casts, 151-152
of function return values, 29 I
return value from mal/ocr), 239
to pointer, 200
to unsigned, 145
to void, 291

cc command, 12

eeil() function, 423

(free() function, 466

char type specifier, 45, 46

CHAR_BIT macro, 508

CHAR_MAX macro, 4 I 5, 508

character arrays. See strings

character constants, 45,182-183
syntax of, 495

character handling functions, runtime library,
411-412

character set
ASCII. See ASCII character set
EBCDIC. See EBCDIC character set

character testing functions, runtime library,
4II

characteristic, of floating-point constants, 53

characters, 45-49
alphabetic, 4 I 2
and strings, 182-183
control, 4 I 2

CTRL-C,115
decimal digit, 4 I 2
hexadecimal digit, testing for, 4 I 2
lowercase

changing to uppercase, 4 I I
testing for, 4 I 2

printable, 4 I 2
printing, 444
punctuation, testing for, 4 I 2
pushing back onto a stream, ungetc()

function, 460
reading, 454

fgete() function, 432
with gete(), 439
with getchar(), 440

signed and unsigned, 44
space, testing for, 4 I 2
uppercase

changing to lowercase, 4 I I
testing for, 4 I 2

writing,fputc() function, 435
to files, pute() function, 450
to stdout, putehar() function, 450

with pute(), 450
with putchar(), 450

checksum function, I 17

clearerr() function, 346, 431

clock() function, 484

cloekJ type, 483

CLOCKS]ER _SEC macro, 483

closing a file, 351
fcloseO function, 431

collating sequences, 413

comma operator" 136-137

601

erroneously used in multidimensional array
references, 198

command line arguments, 309

commands, executing system, system()
function, 468

comments, 26-33
header, 27
nested, 28

common definitions, 228

comparing strings
mememp() function, 471
stremp() function, 474
strcspn() function, 475
strncmp() function, 475
strpbrk() function, 476
strspn() function, 476

comparison expressions, 82-84

comparison operators, 82

compilation, conditional, levels of nesting,
506

compile-time errors, 63

compiler, 3

compiling source files, 11-\3
conditionally, 330-334

complement operator, bitwise -, 143, 147

components, of structures. See structure
members

compound statements, 85-87, 501
levels of nesting. 506

Computer-Aided Software Engineering
(CASE), 395

computer memory, mailbox analogy, 22

concatenated tokens, 505

www.manaraa.com

602

concatenating strings
strcat() function, 474
strncat() function, 474

concatenation of strings, 186

conditional branching statements, 78, 79-89

conditional compilation, 330--334
levels of nesting, 506
syntax of directives, 330

conditional operator ?:, 154-155

const objects, pointers to, 230

const storage class modifier, 230, 235

constant expressions, 119
in array initializers, 162
in case labels, 91
in initializers, 218
in preprocessor commands, 331

constants, 20--22
character, 45,182-183

syntax of, 495
decimal,47
defining macros for, 319
enumeration, 66--67
floating-point, 52, 54

scientific notation, 53-56
syntax of, 494

fractional, 495
giving names to, 36, 319
hexadecimal,47
integer, 47-52

size of,48
syntax of, 495

long, 49
long double, 54
naming, 36-37
octal,47
pointer, 231
string, 178,182-183

maximum number of characters in, 507
symbolic, 36-37
syntax of, 494
unsigned,49

continuation character \, 33-34, 186, 317

continue statement, 111-113

control characters
CTRL-C,1I5
testing for, 412

control flow, 78-117

control lines, syntax of, 504

conversion characters

for printf(), 442, 443, 444, 453-455
in scanf() function, 455

Index

conversion specifiers, in printf() function, 441

conversions, 55-64
array to pointer, 171, 174, 180
assignment, 56
automatic. See implicit conversions
casts, 65
floating-point to floating-point, 62-63
floating-point to integer, 63-72
implicit, 56
integer to floating-point, 63
integer to integer, 58-61
integral promotions. See integral widening

conversions
integral widening, 56
involving unsigned types, 59
of function arguments, 285, 292

turning off, 293
of numbers to strings, 462-463
of strings to numbers, 462-463
quiet. See implicit conversions
sign extension, 60
sign-preserving, 59
signed to unsigned, 61-62
unsigned to signed, 61
value preserving, 59

copying
files, 351-358
strings, 186-188

copying strings
memcpy() function, 472
strcpy() function, 472
strncpy() function, 473

cos() function, 262

cosh() function, 420

cost estimation, 389-394

CPU time, used by a program, clock()
function, 484

ctime() function, 485

ctype.h header file, 407, 411

currency symbol, 416

D
Dam, A. Van, 382

dangling else, 89

data abstraction, 16, 388

www.manaraa.com

Index

data structures, choosing efficient, 384-388

data types, 71-75
aggregate, 39
arithmetic, 38
array, 1-8, 118-157, 158-213,214-241
character, 45-47
declarations. See declarations
enumeration, 66-67
floating-point, 52-54
hierarchy of, 39
integer, 41-47
names of predefined, 522
pointer, 1-8, 118-157, 158-213,214-241
scalar

hierarchy of, 57
mixing,5~

sizes of, 43
signed,44
structure, 242-264
union, 271-278
unsigned,43-44

date, of program compilation, 327

date functions, runtime library, 483-488

Date, C. J., 382

dates, different ways of displaying, 413

DBL_DIG macro, 509

DBL _EPSILON macro, 509

DBL_MAX macro, 509

DBL _MIN macro, 509

debuggers, 399

debugging, 397-399
laws of, 398
using conditional compilation feature, 332

debugging code, adding to source files, 222

decimal constants, 47

decimal digit characters, testing for, 412

decimal point ., 52
different representations of, 413

declaration specifiers, 490

declarations
allusions. See allusions
complex, 310 .
composing, 310-313
decomposing, 310-313
definitions. See definitions
forward referencing, 253
legal and illegal, 313

of arrays, 159-161
of bit fields, 256
offunction arguments, 19,285-288

ANSI style, 286
of functions, 41, 284-295
of global variables, 225-241

a portable strategy, 228
of scalar types, 39-41
of strings, 179-180
of structures, 245
of unions, 271
scope of, 219-224
syntax of, 490
table of, 313
visibility of, 222

declarators, 490
abstract, 493
number allowed in a declaration, 506

decrement operator -, 132-136
precedence of, 135

decryption, 165-166

603

default initializations, of fixed variables, 217

default label, 90

#define directive, 36-37,69, 317-329

defined preprocessor operator, 334

definitions
common, 228
of functions, 284
of global variables, 225-241
tentative, 226

dependency lines, 396

dereference operator *, 72,155

designing software, 382-389
stepwise refinement, 16, 382
top-down, 16

development, of programs, 9-14

diagnostics functions, runtime library, 410

difftime() function, 486

Dijkstra, E. w., 114

div() function, 129,470

div_t type, 461

division, integer, 129

division operator I, 125

do ... while statement, 97-98
syntax of, 98

documentation, 401-402

www.manaraa.com

604

domain errors, 418

dot operator. See structure member operator.

double quote ", 31,178,328

double type specifier, 52

double values, writing with printfO, 80

duration, 215-219
automatic, 215-219
definition of, 214
fixed,215-219
summary of, 234

dynamic memory allocation, 236-239

E
EBCDIC character set, 10 I, 166

EBCDIC character set, 45, 46, 413

echo program, 309

ecvt() function, 418

ed text editor, 12

EDOM macro, 418

efficiency, 4, 188, 233
and data structures, 384-388
and global variables, 224
and I/O buffering, 344-345
and maintainability, 224
and readability, 188, 190, 203
in I/O routines, 358
of arrays, 160
of recursive calls, 308
of sorting algorithms, 304
performance analysis, 40 I
register variables, 229-230
strength reduction optimization, 208, 210,

248
using macros for, 320
using pointers, 188
using prototypes to gain, 295

#eUr directive, 330, 331

elif groups, 503

ellipsis, ... , 295

#else directive, 330

else groups, 503

else if statements, 88

else keyword, 79

else statement, dangling, 89

empty statements. See null statements

encoding, of files, 165

encryption, 165-166

end-of-file condition, testing for,feof()
function, 431

Index

end-of-file conditions, 346, 431

end-of-file indicator, clearing, clearerr()
function, 431

#endif directive, 330, 333

endif lines, 504

entropy, 398

enum specifiers, 492

enum type specifier, 66-67, 279

enumeration types, 66-67

enumeration variables, declaring, 279

environment functions, runtime library,
467-468

environment lists, 468

environments, saving and restoring, 424

EOF macro, 96, 346

epsilon, 116, 509

equal to operator ==,82, 138
confused with assignment operator =, 83

ERANGE macro, 418

ermo, 347
definition of, 407
set by fgetpos() function, 433
set by fsetpos() function, 437
set by ftell() function, 439
set by signal(), 426
type of, 409

error condition, testing for,ferror() function,
432

error conditions, 432

#error directive, 337

error handling
for I/O functions, 346
runtime library, 409

error indicator, clearing, clearerr() function,
431

error messages, sfl'error() function, 474

error recovery, 425

www.manaraa.com

Index

errors
domain. 418
overflow. 418
printing messages. 441
printing messages with perror(). 441
range. 418
reported during preprocessing. 337
underflow. 418

escape character sequences. 33. 50-53

escape sequences. syntax of. 496

evaluation. order of. 123-124
and side effects. 134

executable code. 13

executable program. 13

executable statements. 20

exit() function. 29. 94. 468

EXIT _FAILURE macro. 461

EXIT_SUCCESS macro. 461

exp() function. 419

expansion. macro. 317

exponent. in floating-point constants. 53. 495

exponential functions. runtime library. 419

expression statements. 50 I

expressions. 118-120
See also operators
boolean. 82
cast. 65. 498
comparison. 82
constant. 119

in preprocessor commands. 331
float. 119
implicit conversions within, 56-58
integral. 119
introduction to. 24-25
loop-invariant. 233
omitting in a for statement. 103-104
order of evaluation. 123-124. 134
parenthesized. 122-123
pointer. 119
pointer arithmetic. 167-168
postfix. syntax of. 497
primary. 497
syntax of. 496

expressions. assignment. 25

Extended Binary-Coded Decimal Interchange
Code. See EBCDIC character set

605

extern storage class specifier. 29. 225. 227.
234.235.289.335

external names. See global variables

F
fabs() function. 423

failure values. returned from functions. 189

false values. 82

fe/ose() function. 431

fcvt() function. 418

feof() function. 346. 353.431

ferror() function. 346. 356. 432

J.nush() function. 345.432

fgetc() function. 352. 432

fgetpos() function. 432-433

fgets() function. 354-355. 433

field widths
in printf() function. 447
in scanf() function. 455

fields. of structures. See structure fields

file access modes. 434

file names. in #include directive. 335

file pointers. 343

file position indicator. 343
fgetpos() function. 432
fseek() function. 438
ftellO function. 438
getting value of,ftell() function. 438
setting

fseek() function. 438
fsetpos() function. 437

file position indicators. moving to start of file.
rewind() function. 451

file scope. 219-221. 223-225
example of. 267

FILE structure. 342

filenames
.c extensions. 12
.h extension. 13
.0 extensions. 12
setting compiler's knowledge of. 336

www.manaraa.com

606

files
appending to, 434
binary, 434
closing,Jclose() function, 431
creating,Jopen() function, 434
object, linking together, 395
opening,Jopen() function, 433
reading

Jgete() function, 432
Jgets() function, 433
Jread() function, 436
Jseanf() function, 437
gete() function, 439
seanf() function, 452

reading from, 434
removing, 451
renaming, 451
reopening,Jrepoen() function, 437
temporary

tmpjile() function, 459
tmpnam() function, 459

text, 434
writing to, 434

fprintf() function, 435
fpute() function, 435
Jputs() function, 436
fwrite() function, 439
pute() function, 450
puts() function, 450

first in, last out (FILO) queues, 280

fixed duration, 215
and recursion, 308
initialization of variables with, 216-218
using variables with, 218-219

flag characters
in printf() function, 446

flags
end-of-file, 346
error, 346

float constants, 54

float expressions, 119

float type specifier, 52

float.h header file, 407,507

floating-point constants, 52
scientific notation, 53-56
syntax of, 494

floating-point exception signal, SIGFPE
macro,427

floating-point expressions, rounding of, 138

floating-point overflow, 62

floating-point types, 52-54
characteristics of, 509
mixing, 62-63
mixing with integer types, 63-72
printing, 443
reading, 453

floating-point values
comparing, 138
converting strings to

atoJ() function, 462
strtod() function, 463

fractional part of, 421

floor() function, 423

flow utility, 395

FLT_DIG macro, 509

FLT_EPSILONmacro, 509

FLT_MAXmacro, 509

FLT _MIN macro, 509

flushing I/O buffers, 432

Jmod() function, 423

Foley, 382

Jopen() function, 348-351,433-435

for statement, 99-103
advantages of, 102
omitting expressions in, 103
syntax of, 99

Index

form feed, escape character sequence \f, 50

formal arguments, 19,281,282
assigning values to, 249

formal parameters. See formal arguments

format modifiers, in printf() function, 442

formatting source files, 26-28, 87
indentation, 81
preprocessor lines, 317

FORTRAN programming language, 80,160,
198

forward referencing, of structures, 253

fprintf() function, 349,435

Jpute() function, 352,435

fputs() function, 354-355, 436

fractional constants, syntax of, 495

fractional part, of floating-point values, 421

Jread() function, 355-362, 436

www.manaraa.com

Index

free() function, 237, 466
example using, 269

freopen() function, 437

fre.xpO function, 421

fscanf() function, 437

fseekO function, 361-362, 438

fsetpos() function, 437

ftell() function, 361-362,438-439

function allusions, 288--290
scope of, 290
syntax of, 289

function body, 18--20,286

function calls, 29, 284-295
syntax of, 291
testing status of, 410
using pointers to functions, 298--306

function definitions, 284
syntax of, 284-285, 489

function invocations. See function calls

function prototypes, 293-295

function return values
pointers to functions, 298, 304-306
structures, 262

function scope, 219-221, 223

functional specification, 392

functions, ll, 281-315
allusions to, 284
anatomyof,l8--25
arguments to, 19

See also arguments
calling, 15,29
conversion to pointers, 296
declarations of, 284-295
declaring return type of, 41
default return type of, 284
definition of, 14, 284
invocations of. See function calls
invoking, 15
mainO, 28
namesof,I9
passing as function arguments, 285, 286
pointers to, 296-306

assigning values to, 297
calling functions using, 298--306
dereferencing, 299
example using, 300-306
passing as arguments, 302
return type agreement, 298

returning, 304-306
prototypes of. See function prototypes
recursive, 306-309
return type of, 284
return value of, 284, 286-288
storage class of, 290
value of, 14-17
vs. macros, 324

fwrite() function, 355-362, 439

G
gaps, in structures, 253

garbage values, 162,217

gcvt() function, 418

generic pointers, 239

getcO function, 352, 353, 408, 439

getchar() function, 96, 440

getenvO function, 468

gets() function, 192, 440

global names

607

maximum number in one source file, 507
number of significant characters in, 507

global variables, 219, 224-228
a portable strategy for declaring, 228
allusions to, 225
definitions of, 225-241
initialization of, 335
naming rules for, 225
non-ANSI strategies for declaring,

227-228

gmtime() function, 486

goto statement, 113-114
acceptable use of, 278

greater than operator >, 82, 138

greater than or equal to operator >=, 82, 138

grep utility, 395

group parts, 502

grouping, of operators, 121, 122

H
hardware, definition of, I

hash tables, 386

www.manaraa.com

608

header comments, 27

header files, 13, 335, 396
and maintainability, 227
assert.h,407
ctype.h,407
float.h,407
for runtime library, 406
limits.h,407
locale.h, 407, 414
macro definitions in, 323
math.h, 407, 418
setjmp.h, 407, 424
signal.h, 407, 426
stdarg.h, 407, 429
stddefh, 407
stdio.h,407
stdlib.h, 407,461
string.h, 407, 471
time.h, 407, 483

heap sort algorithm, 304

hexadecimal constants, 47

hexadecimal digit characters, testing for, 412

hexadecimal numbers
reading and writing, 48
table of, 146

hierarchies
of programming components, 15
of scopes, 220

hierarchy
of data types, 39
of scalar data types, 57

high-level programming languages, 2, 3-5
advantages of, 5

hobgoblin, of software engineers, 16

Hofstadter, Douglas, 37

holes, in structures, 253

Hopper, Lieutenant Grace, 397

horizontal tab, escape character sequence \t
50 '

HUGE_VAL macro, 418

human languages, 2,3

hyperbolic cosine, cosh() function, 420

hyperbolic functions, runtime library, 419

hyperbolic sine, sinh() function, 420

hyperbolic tangent, tanh() function, 420

I
I/O, 341-372

binary format, 343-344
buffering, 341, 344-345
closing a file, 351
efficiency, 358
end-of-file conditions, 346
error handling, 346-347
file pointers, 343
file position indicator, 343
granularity of, 351
opening a file, 348-351
random access, 361-371
reading data, 351-358
streams, 342-344
text format, 343-344
unbuffered, 360
writing data, 351-358

Index

I/O functions, runtime library functions
431-460 '

idempotent header files, 406

identifiers
See also names
syntax of, 494

#if directive, 330

if groups, 503

if sections, 503

if statement, 79-81
nested,88

#ifdef directive, 333

#ifndef directive, 333

implementation dependencies, sizes of
objects, 153

implementation limits, 506-509

implicit conversions, 56
in expressions, 56-58

#include directive, 14,34-35,335-336
maximum levels of nesting, 507

including header files, 14

including source files, 34-35, 335-336

increment operator ++, 96,132-136
applied to pointers, 185, 187
applied to subscripts, 187
postfix, use of, 309
precedence of, 135-143

www.manaraa.com

Index

indentation, 81
misleading, 87
with nested loops, 108

index, 363

index sort, 363

infinite loops, 114--115, 176

information hiding, 388

initial element, of an array, 159

initialization
of arrays, 162-164
of enum constants, 66
of global variables, 226, 335
of multidimensional arrays, 196
of nested structures, 252
of scalar types, 54--55
ofsnings, 179-180, 183

memset() function, 472
of structures, 246
of unions, 275
of variables with automatic duration,

216-218
of variables with fixed duration, 216-218

initializations, default, 217

initialized declaration lists, 493

input and output. See I/O

instruction set, I

instructions, illegal, SIGILL macro, 427

int type, 41
size of, 41

int type specifier, 44

INT _ MAX macro, 508

INT _MIN macro, 508

integer arithmetic functions, runtime library,
470

integer constants, 47-52
size of, 48
syntax of, 495

integer division, sign of result, 129

integer overflow, 60

integers
and characters, 45-49
and pointers, 167-168, 171
converting strings to, atoi() function, 462
different types of, 41-47
largest,floor() function, 423
mixing in expressions, 58

609

mixing with floating-point values, 63-72
printing, 443
reading, 453
smallest, ceil() function, 423
unsigned,43-44

integral expressions, 119

integral promotions. See integral widening
conversions

integral widening conversions, 56

interpreter, 3, 374

interrupt signal, SIGINT macro, 427

isalnum() function, 412

isalpha() function, 412
example of, 84

iscntrl() function, 412

isdigit() function, 412

isgraph() function, 412

islower() function, 412

isprint() function, 412

ispunct() function, 412

isspace() function, 105,412

isupper() function, 412

isxdigit() function, 412

iteration statements, 78
levels of nesting, 506
syntax of, 502

iterative statements. See looping statements

J
jmp _buftype, 424

jump statements, syntax of, 502

justification, in printf() function, 442

K
K&R standard, 6

differences from ANSI Standard, 510-521

K&R strategy, for declaring global variables,
227

Kanji character set, 45

www.manaraa.com

610

Kernighan, Brian, 6

key, 363

keywords, 18,522
for scalar types, 40
list of, 24

Knuth, Donald, 304, 387

L
L _tmpnam macro, 459

labeled statements, syntax of, 501

labels
case, 90
default, 90
statement, 113, 223

labs() function, 470

languages
assembly, 2
human, 2,3
machine, 1
programming. See programming languages

LC _ALL macro, 414

LC _COLLATE macro, 414

LC _CTYPE macro, 414

LC _NUMERIC macro, 414

LC_TIMEmacro, 414

lconv structure, 415

LCTYPE macro, 480

WBL _DIG macro, 509

WBL _EPSILON macro, 509

WBL _ MAX macro, 509

WBL_MINmacro, 509

ldexp() function, 421

ldiv() function, 470-471

ldiv _t type, 461

left shift assign operator «=, 151

left shift operator «, 143, 144-145

less than operator <, 82, 138

less than or equal to operator <=, 82

lexical analysis, 21

libraries, runtime, 13-20

lifetime of a variable. See duration

limits

Index

defined by implementations, 506-509
numerical, 506, 507-509
translation, 506-507

limits.h header file, 407,507

line buffering, 345, 458

line control, 336-338

#line directive, 336

line number, setting compiler's knowledge of,
336

linked lists, 264-271
adding elements to, 267-268
creating, 266
deleting an element from, 269-270
finding an element in, 270-272
inserting an element in, 268-269
symbol tables as, 385

linkers, 13

linking, global variables, 228

linking object files, 13

lint utility, 395

LISP programming language, 308

literals. See constants

loaders, 13

loading a program, 13

local variables, 215

locale parameters, runtime library, 413-417

locale.h header file, 407, 414

localtime() function, 486

log() function, 421

loglO() function, 421

logarithmic functions, runtime library, 419

logarithms
log() function, 421
/oglO() function, 421

logical bitwise operators, 145-157

logical operators, 139-143
truth table for, 140

long constants, 49

long double constants, 54

www.manaraa.com

Index

long double type specifier, 52

long int type specifier, 44

long ints, converting strings to
atol() function, 462
strtol() function, 463

long type specifier, 42

WNG _MAX macro, 508

LONG_MIN macro, 508

longjmp() function, 424

loop-invariant expressions, 233

looping statements, 78, 95-107

loops
infmite, 114, 176
nested,107-109

lowercase characters
changing to uppercase, 411
testing for, 412

Ivalues, 25, 128

M
machine instructions, 15

machine language, 1,2,3

macro arguments, maximum number of, 507

macro body, 317

macro expansion, 317

macro names, maximum number of
simultaneously defined, 507

macro parameters, 505

macros, 36-37, 317-329
advantages of, 324
arguments to, 319

binding of, 326
no type-checking for, 321-323
side effects in, 325

body of, 317
built-in, 326-329
calling, 317
defming, 317
disadvantages of, 325
expansion of, 317
names of, 317, 319

predefined, 522
recursive, 324

611

runtime library functions implemented as,
408-409

syntax of, 320
testing existence of, 333
undefining, 323
vs. functions, 324-326

mailbox analogy, for computer memory, 22

main() function, 28-31,309-310

maintainability,4, 16,374
and efficiency, 224
and header files, 227
and relational expressions, 143
assigning to formal parameters, 250
block scope, 222
file scope, 224
naming conventions, 23
using constant names, 319
using enumerations, 201
using header files, 335
using macros, 36

maintenance, software, 398

maintenance mode, 397

make utility, 395-398

makefiles, 396

malloc() function, 237, 466
ANSI version, 239
example using, 238
old style, 239

mantissa, in floating point constants, 53

masking, 147-148

math functions, runtime library, 418-423

math.h header file, 407, 418

MB _CUR_MAX macro, 461, 481

mblen() function, 480

mbtowc() function, 481

mbtowcs() function, 482

members, of structures. See structure members

memchr() function, 471

memcmp() function, 471

memcpy() function, 472

memmove() function, 472

memory, mailbox analogy, 22

memory allocation
calloc() function, 465
dynamic, 236-239

www.manaraa.com

612

free() function, 466
malloe() function, 466
of arrays, 161, 176
of automatic variables, 215
of bit fields, 256
of integers, 42
of multidimensional arrays, 195
of stack space, 308
of strings, 179
of structures, 253-255
of unions, 272
realloe() function, 466

memory management functions, runtime
library, 465-466

memory operators, 155

memory storage. See memory allocation

memset() function, 472

merge sort algorithm, 304

milestones, 377

minus operator, unary -, 124

minus sign, 124

mktime() function, 484-485

modf() function, 422

modularity, 390

modules, 224, 382

modulus operator. See remainder operator

monetary values, formatting, 415

most significant bit (MSB), 43

MS-DOS operating system, 5

multibyte characters, 47
MB _CUR_MAX macro, 461
runtime functions, 480-482
shift states, 480
string functions, 482

multidimensional arrays, 194-20 I
example of, 200-201
initializing, 196-198
passing as function arguments, 198-200

multiplication operator *, 20,125

multiplicative operators, 125

Index

N
name spaces, of structs and unions, 252, 255

names, 22-24
array, interpretation of, 171
beginning with underscore, 523
case sensitivity of, 22
choosing meaningful, 24
conflicting, 221, 222
external. See global variables
global, number of significant characters in,

507
legal and illegal, 23
maximum length of, 23
maximum number per block, 507
naming conventions, 23, 24, 36, 40
number of significant characters in, 507
of arguments, 19
of arrays, 172
of constants, 36-37
offunctions, 19
of global variables, 225
of macros, 317, 319
of predefined macros, 522
of predefined types, 522
of preprocessor directives, 522
of runtime library functions, 406, 522
of structure and union members, 244, 252
reserved, 522
scope of, 219-224
visibility of, 221, 222

natural alignment, 254

NDEBUG macro, 410

negation operator, logical !, 139

negative numbers, 47
representation of, 43

nested comments, 28

nested expressions, maximum number of
levels, 507

nested if statements, 88-90

nested loops, 107-109

nested structures, 250
initialization of, 252

nesting, minimum number of levels, 506

newlines, 26
escape character sequence \n, 30, 50
used to end preprocessor lines, 3 I 7
in text files, 343

nonlocal jumps, runtime library, 424-425

www.manaraa.com

Index

not equal to operator !=, 82, 138

not invented here (NIH) syndrome, 391

NP-complete problems, 404

null character, and printj() function, 183

null character \0, 50, 178
inserted by fgetsO, 354

NUll macro, 346,409

null pointers, 168
example of, 267
in initializers, 208

null statements, 105-107

numerical limits, 506, 507-509

o
object code, 13

object files, 11
linking, 13
linking together, 395

octal constants, 47

octal numbers
reading and writing, 48
table of, 146

off-by-one errors, 104

omitted-extern strategy, for declaring global
variables, 227

one's complement notation, 43

opening a file, 348-351

opening files, fopenO function, 433

operands, 56, 118-120

operating systems, 5
UNIX. See UNIX operating system

operators, 118-120,123-126
additive, 125
address of &, 70, 297
assignment, 128-132,500

bitwise, 151
associativity of, 120, 121-124
binary,57,82,499
binary arithmetic, 125-128
bit manipulation, 143-151
bitwise assignment, 151
cast, 65, 151-152
comma, 136-137

comparison, 82
conditional,154-155
decrement, 132-136
grouping of operands to, 121, 122
increment, 132-136
introduction to, 25
list of, 120
logical, 139-143
logical bitwise, 145-157
memory, 155
multiplicative, 125
pointer arithmetic, 167-168
postfix, 132
precedence of, 120, 121-124
prefix, 132
relational, 82,138-139

side-effects in, 142
shift, 144-145
side-effect, 134
sizeof, 153-154, 174, 178
unary, 57, 498
unary arithmetic, 124-125

optimizations
See also efficiency

613

performed by the compiler, turning off,
232-233

strength reduction, 248

OR operator
bitwise exclusive A, 143, 147
bitwise inclusive 1,143,146
logical II, 139

order of evaluation, 123-126
and side effects, 134

output. See I/O

overflow conditions, 64, 124
floating -point, 62
integer, 60

overflow errors, 418

p
padding, in printj() function, 447

parameter type lists, 493

parameters. See arguments

parentheses, 122-123
function call, 29
in macro defmitions, 326

parenthesized expressions, 122-123

parsing, 21

www.manaraa.com

614

Pascal programming language, 8, 80, 82, 198

pass by reference, 260, 281, 282

pass by value, 260, 281, 282, 283

passing function arguments, 281-283

pasting, of tokens, 329

pattern matching, 188-196
strstr() function, 476

performance analysis, 401

pen'or() function, 409, 441

planning a software project, 391-393

plus operator, unary +, 124

plus sign, 124

pointer arithmetic, 167-168, 171
subtraction, 167

pointer expressions, 119

pointers, 1-8, 118-157, 158-213,214-241
and arrays, 171-172
and integers, 167-168, 171
arrays of, 201-206
constant, 231
declaration of, 71
dereferencing, 72-74
generic, 239
initializing, 75
introduction to, 71-75
null,168
passing as arguments, 168-170
passing as function arguments, 231
printing, 444
reading, 454
to char, initializing, 179
to const objects, 230
to functions, 296-306

assigning values to, 297
calling functions using, 298-306
dereferencing, 299
example using, 300--306
passing as arguments, 302
return type agreement, 298
returning, 304-306

to pointers, 205-210
to structures, 244, 247, 252
to void, 239

See also generic pointers
type compatibility of, 71,167-168,288

popping, off of a stack, 280

portability, 3, 374
and bit fields, 256, 259

and bit shifting, 145
and pointers to functions, 299
global declarations, 228
of standard I/O functions, 344
of structures, 254
using sizeof for, 178

portable C compiler (PCC), 6

porting, 5

postfix expressions, syntax of, 497

postfix operators, 132

pound sign #, 34

pow() function, 152,422

powers, pow() function, 422

powers of two, ldexp() function, 421

#pragma directive, 338

Index

precedence, of operators, 120, 121-124

precision, 52, 116
loss of, 62, 63
of floating-point values, 52, 509

precision specifiers, in printf() function, 448

prefix increment operator, 187

prefix operators, 132

preprocessor, 316-340
control lines, syntax of, 504
#define directive, 36-37, 69, 317-329
#elif directive, 330
#else directive, 330
#endif directive, 330, 333
#error directive, 337
#if directive, 330
#ifdef directive, 333
#ifndef directive, 333
#include directive, 34, 335
introduction to, 34-36
#line directive, 336
macro parameters, 505
macros, 317-329

See also macros
arguments to, 319
syntax of, 320

names of directives, 522
#pragma directive, 338
stringizing, 328-333
token pasting, 329
tokens, 505
#Undef directive, 323

primary expressions, 497

printable characters, testing for, 412

www.manaraa.com

Index

printf() function, 31-33, 441-449
writing strings, 183

private types, 388

procedures, 14

product building, automatic, 395-398

product specification, 376--382

prof utility, 395

profiling, 40 I

program development, 9-14

program execution, terminating
abort() function, 467
exit() function, 468

program scope, 219-221, 223-225
See also global variables

program start-up, 216

program termination
atexit() function, 467
exit() function, 468

programming languages
high-level, 2, 3-5
systems, 5

programs, batch, 377

project management, 389-394

project planning, 391-393

Prolog programming language, 308

prototypes, 322
See also function prototypes

pseudocode, 17

punctuation characters, testing for, 412

pushing, onto a stack, 280

putc() function, 352, 408, 450

putchar() function, 450

puts() function, 450

Q
qsort() function, 303,365,469

quicksort algorithm, 304

quiet conversions. See implicit conversions

quote
double ",31,178,328

surrounding filenames, 335
single ',45

quotient,ldiv() function, 470

quotients, div() function, 470

R
raise() function, 428

rand() function, 465

RAND _MAX macro, 461, 465

random access, I/O, 361-371

random number functions
rand() function, 465
runtime library, 465
srandO function, 465

range errors, 418

Rationale Document, ANSI, 7

readability, 3, 16,26, 188,374
and efficiency, 188, 190, 203
and for statements, 137
and pointers, 188
and void type, 284
block scope, 222
declaring functions, 289
formatting. See formatting source files
naming conventions, 23
nested structures, 251
of array initializers, 197

615

of formal array argument declarations, 173
of recursive calls, 308
using arithmetic assignment operators, 130
using break statements, 112
using logical operators, 143
using macros, 36
vs. typing ease, 377

reading, strings, 183-184

reading files, 351-358
fgetc() function, 432
fgets() function, 433
fread() function, 436
fscanf() function, 437
getc() function, 439
scanf() function, 452

realloc() function, 237, 466

recursion, 306--309
efficiency of, 308
of macros, 324

redundancy, needless, 16

www.manaraa.com

616

register storage class specifier, 229-230, 234,
285

register variables, 229-230

registers, 229

relational expressions, side-effects in, 142

relational operators, 82, 138-139

remainder
div() function, 470
ldiv() function, 470

remainder function,j1nod(), 423

remainderoperator%,125,126-135
sign of result, 129

remainders,j1nod() function, 423

remove() function, 451

rename() function, 451

reserved keywords, 18

reserved names, 522-528

return statement, 20, 29, 286
used to exit a switch statement, 91-94

return type, of functions, default, 284

return value of functions, 284, 286-288

rewind() function, 451

right shift assign operator »=, 151

right shift operator », 143, 144-145

right-arrow operator. See structure member
operator->

Ritchie, Dennis M., 5

rounding, of floating-point expressions, 138

runtime errors, 63
running out of stack memory, 307

runtime library, 13-20
character-handling functions, 411-412

case mapping, 411
character testing, 411

date and time functions, 483-488
diagnostics functions, 410
error handling, 409
functions vs. macros, 408-409
general utilities, 461-470

environment functions, 467-468
integer arithmetic functions, 470
memory management functions,

465-466
random number functions, 465

Index

searching and sorting functions, 469
string conversion functions, 462

header files, 406
1/0,431-460
locale parameters, 413-417
math,418-423

exponential functions, 419
hyperbolic functions, 419
logarithmic functions, 419
trigonometric functions, 419

names of functions, 406, 522
nonlocal jumps, 424-425
signal handling, 426-428
string-handling functions, 471-479
synopses of functions, 406
variable argument lists, 429-430

rvalues,25

s
scalar data types

hierarchy of, 57
mixing in expressions, 55-64
sizes of,43

scaling, in pointer arithmetic, 167-168,249

scan lists, in seanf() function, 455

seanf() function, 33-34,283,452
reading strings, 183

sees, UNIX source control utility, 394, 395

SCHAR_MAX macro, 508

SCHAR_MIN macro, 508

scientific notation, 53-56

scope, defmition of, 214

scopes, 219-224
block, 219-221, 222
file, 219-221,223-225

example of, 267
function,219-221,223
global, 219, 223-228
of function allusions, 290
of function arguments, 223
program, 219-221,223-225

See also global variables
summary of, 234-236

searching functions, runtime library. 469

security techniques, 165

SEEK_CUR macro, 361,438

SEEK_END macro, 361, 438

www.manaraa.com

Index

SEEK_SET macro, 361,438

segment violation signal, SIGSEGV macro,
427

selection statements, syntax of,50l

self-referencing structures, 252-253, 266

semicolon ;, 19
misplaced,l06

setbuf() function, 360, 457

setjmp.h header file, 407,424

setjmp() function, 424

setlocaleO function, 413, 414-417

setvbuf() function, 360, 457-458

shift operators, 144-145

Shore, John, 373

short int type specifier, 44

short type specifier, 42

SHRT _ MAX macro, 508

SHRT _MIN macro, 508

side-effects, 134
in expressions, 130
in macro arguments, 325
in relational expressions, 142

SIG _DFL macro, 427

SIG _ERR macro, 427

SIG JGN macro, 427

SIGABRTmacro, 427, 467

SIGFPE macro, 427

SIGIU macro, 427

SIGINT macro, 427

sign bit, 43

sign extension, 60

sign-preserving conversions, 59

signal-handling functions, runtime library,
426-428

signal.h header file, 407, 426

signal() function, 426-428

signals
abort, SIGABRT macro, 427
and setjmp() and longjmp(), 425

617

floating-point exception, SIGFPE macro,
427

ignoring, SIG JGN macro, 427
illegal instruction, SIGIU macro, 427
interrupt, SIGINT macro, 427
segment violation, SIGSEGV macro, 427
sending, raise() function, 428
termination, SIGTERM macro, 427

signed char type specifier, 44

signed type specifier, 44

signed types, mixing with unsigned types,
61--62

SIGSEGV macro, 427

SIGTERM macro, 427

sinO function, 262, 420

single quote' , 45

sinh function, 420

size_t type, 461, 471

sizeof operator, 153-154
applied to arrays, 162, 174
used for portability, 178, 365

smallest integer, ceil() function, 423

software, defmition of, I

software design, 382-389

software maintenance, 398

software portability, 3

software tools, 395-397

sort routine, generalized, 300-306

sorting algorithms, 175-178
bubble sort, 175,300
heap sort, 304
index sort, 363
merge sort, 304
quicksort, 304

sorting functions, runtime library, 469

source files, II
compiling, II
formatting, 26-28

indenting, 81
maximum number of characters per line,

507
syntax of, 489

source management, 394

space character, 26
testing for, 412

specification, of products, 376-382

www.manaraa.com

618

specifications, functional, 392

sprint/() function, 418, 458

sqrt() function, 422

square roots, sqrt() function, 422

srand() function, 465

sscanf() function, 458

stack memory, running out of, 307

stacks,280
running out of memory for, 307

standard streams, 343

start-up, of programs, 216

statement labels, 113
scope of, 223

statements
assignment, 20, 25-26
block,85
break, 91, 111-113
compound, 85-87,501
conditional branching, 78
continue, 111-113
do ••• while,97

syntax of, 98
else if, 88
executable, 20
expression, 50 I
for, 99-103

advantages of, 102
omitting expressions in, 103
syntax of, 99

goto, 113-114
if,79-81
iteration, 78

syntax of, 502
iterative, 78
jump, syntax of, 502
labeled, 113

syntax of, 501
looping, 95-107
nested if, 88
null, 105-107
return, 29, 91
selection, syntax of, 50 I
switch, 89-94

syntax of, 90
syntax of, 500
while, 95-97

syntax of, 95

static storage class specifier, 215, 216, 220,
223,224,234,235,289

and array initialization, 164

dual meanings of, 224

stdarg.h header file, 407, 429

stddefh header file, 346, 407, 409

stderr, 343

stdin, 343
reading from

getchar() function, 440
gets() function, 440

stdio.h header file, 342, 346, 407

stdlib.h header file, 407, 461

stdout, 343
writing to

print/() function, 441-449
putchar() function, 450

stepwise refinement, 16,382

storage class modifiers, 230
const, 235
volatile, 232-233, 235

storage class specifiers
auto, 216,234, 235

Index

extern, 29, 225, 227, 234, 235,289,335
register, 229-230, 234, 285
static, 164,215,216,220,223,224,234,

235,289
dual meanings of, 224

syntax of, 491

storage classes
definition of, 215
of functions, 290
summary of, 234-236

storage specifiers, omitted, 235

straight line programs, 78

strcat() function, 474

strchr() function, 475

strcmp() function, 208,474

strcoll() function, 414, 473

strcpy() function, 472
examples of, 186-188

strcspn() function, 475

streams, 342-344
standard, 343

strength reduction optimization, 210, 248

strerror() function, 409, 474

strftime() function, 414, 486-488

www.manaraa.com

Index

string constants, 178, 182-183
maximum number of characters in, 507

string conversion functions
multibyte, 482
runtime library, 462

string-handling functions, runtime library,
471-479

string literal, 178

string.h header file, 407, 471

stringized tokens, 505

stringizing,328-333

strings, 178-193
arrays of, 202
assigning, 183
assignments, 180
collating, strcoll() function, 473
comparing

memcmp() function, 471
strcmp() function, 474
strcspn() function, 475
strncmp() function, 475
strpbrk() function, 476
strspn() function, 476

concatenating, 186
strcat() function, 474
strncat() function, 474

converting to numbers, 462
copying, 186-188

memcpy() function, 472
memmove() function, 472
strcpy() function, 472
strncpy() function, 473

declaring, 179-180
dividing into tokens, strtok() function, 477
finding characters in

strchr() function, 475
strrchr() function, 476

finding values in, memchr() function, 471
initializing, 179, 183

memset() function, 472
interpreted as pointer, 180
length of, 184-186,475
memory allocation of, 179
multibyte, 482
pattern matching, 188-196

strstr() function, 476
printing, 444
producing with preprocessor operator #,

328-333
reading, 183-184, 454

fgets() function, 433
reading formatted data from, sscanf()

function, 458

reading with gets(), 440
vs. chars, 182-183
writing, 183-184

fputs() function, 436
writing formatted data to, sprintj()

function, 458
writing to files, puts() function, 450
writing with puts(), 450

strlen() function, 475
example of, 184-186

strncat() function, 474

strncmp() function, 475

strncpy() function, 473

Stroustrup, Bjarne, 230, 293

strpbrk() function, 476

strrchr() function, 476

strspn() function, 476

strstr() function, 476

strtod() function, 463

strtok() function, 477-479

strtol() function, 463

strtoul() function, 464

struct type specifier, 245
name space of, 252, 255

structure fields, 243

structure member operator ., 246

structure member operator ->, 247

structure members, 243
alignment of, 253-255, 256
bit fields. See bit fields
maximum number of, 507
naming, 244
referencing, 246-247
syntax of declarations of, 491, 492

structure specifiers, 492

structure templates, 244

structures, 242-264
arrayso~244,247-250

bit fields. See bit fields
declaring, 245
forward referencing of, 253
initializing, 246
linked list application. See linked lists
memory allocation of, 257
nested, 250-252

619

www.manaraa.com

620

passing as function arguments, 260-261
vs. passing arrays, 258

pointers to, 244, 247, 252
portability of, 254
returning from functions, 262
self-referencing, 252-253, 266
storage of, 244

strxfi'm() function, 479

stubs, 286

subexpressions, 56

subroutines, 14

subscripting, 158, 160

subtraction, of pointers, 167

subtraction operator -, 125

switch statement, 89-94
maximum number of case labels, 507
syntax of, 90-95

symbol tables, 384

synopses, of runtime library functions,
40~08

syntax, of ANSI C, 489-505

system commands, executing, system()
function, 468

system() function, 468

systems programming language, 5

T
tab

horizontal \t, 50, 107
vertical \v, 50

tag names
enumeration, 279
structure, 244

tan() function, 262, 420

tanh() function, 420

Tannenbaum, A., 382

technical writers, 401

templates, in structure declarations. See
structure templates

temporary files
tmpfile() function, 459
tmpnam() function, 459

tentative definitions, 226

terminate a program,
abort() function, 467
exit() function, 468

Index

termination signal, SIGTERM macro, 427

test engineering, 400

test suites, 400

testing software products, 400

text format, 343-344

Thompson, Ken, 5

time, of program compilation, 327

time functions, runtime library, 483-488

time.h header file, 407, 483

timer) function, 484

time _t type, 483

times, different ways of displaying, 413

tm type, 483

TMP _MAX macro, 459

tmpfile() function, 459

tmpnam() function, 459

token pasting, 329

tokens, dividing strings into, strtok() function,
477

tolower() function, 46, 411

tools, for software production, 395-397

top-down design, 16

toupper() function, 46, 411

translation limits, 506-507

travelling salesman problem, 404

tree structure, 123

trees, binary, 385

trigonometric functions, runtime library, 419

trigraph sequences, 51

true values, 82

two's complement notation, 43

type conversions. See conversions

type declarations. See declarations

type matching, of enum variables, 66

www.manaraa.com

Index

type specifiers
char,45,46
double,52
enUID, 66417, 279
float, 52
int, 41, 44
long, 42
long double, 52
long int, 44
short, 42
short int, 44
signed,44
signed char, 44
struct, 245, 252, 255
syntax of, 491
union, 252, 255
unsigned, 44, 61-62
unsigned char, 44
unsigned long, 44
unsigned short, 44, 70
void,67-68

used as function return type, 284

type-checking
none for macro arguments, 321
of function arguments, 293
of function return values, 287

typedefs, 68-70
confusing with #define, 69
for structures, 245
used to simplify declarations, 310

u
UCHAR _MAX macro, 508

CHAR _MIN macro, 508

U1NT _MAX macro, 508

Ullman, 382

ULONG _MAX macro, 464, 508

unary arithmetic operators, 124-125

unary minus operator -, 124

unary operators, 57, 498

unary plus operator, 124

unbuffered I/O, 360, 458

#Under directive, 323

undefined values, 161

underflow errors, 418

underscore character _, 24
macro names beginning with, 326
names beginning with, 523

ungetc() function, 105,460-461

union specifiers, 492

621

union type specifier, name space of, 252, 255

unions, 271-278
confusion with casts, 273
initializing, 275
memory allocation of, 272

UNIX operating system, 5
and C runtime library, 405
cc command, 12
compiling and linking, 12
echo program, 309
I/O, 341, 344
strategy for declaring global variables, 227
tools available with the, 395

unnamed bit fields, 256

unsigned char type specifier, 44

unsigned constants, 49

unsigned integers, 43-44

unsigned long int, converting strings to,
strtoul() function, 464

unsigned long type specifier, 44

unsigned short type, 70

unsigned short type specifier, 44

unsigned type specifier, 43-44, 61-62

unsigned types, mixing with signed types,
61-62

unwinding, in recursive calls, 308

update modes, 433

uppercase characters
changing to lowercase, 411
testing for, 412

USHRT _MAX macro, 508

v
va_argO macro, 430

va Jnd() function, 430

va_startO macro, 429

value-preserving conversions, 59

www.manaraa.com

622

variable argument lists, 429-430
vJprintf() function, 459
vprintf() function, 460

variable arguments lists, vsprintf() function,
460

variables, 20--22
addresses of, 21, 70--71
names of, 22, 221

variant records, 275-278

version skew, 396

vertical tab, escape character sequence \v, 50

vfprintf() function, 459-460

vi text editor, 12

visibility, of names, 221, 222

VMS operating system, 5

void data type
functions returning, 291
pointers to, 239

void type specifier, 67-68
used as function return type, 284

volatile storage class modifier, 232-233, 235

volatile variables, and setjmp() and iongjmp(),
424

vprintf() function, 460

vsprintf() function, 460

w

wes(ombs() function, 482

wetomb macro, 481

while statement, 95-97
syntax of, 95

whitespace characters, 26

VVirth,~ik1aus,382

writing strings, 183-184

writing to files, 351-358
Jprintf() function, 435
Jputs() function, 436
fwrite{) function, 439
pute() function, 450
puts() function, 450

writing to stdout
printf() function, 441
putehar() function, 450

x
X3J11 Technical Committee, 6

v
yaee utility, 337

z
zero, representation of, 43

Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions false
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

